Home
Class 12
MATHS
Let f(x) =|{:(cos x ,1,0 ),(1,2cosx,1),(...

Let f(x) =`|{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}|` then

A

`f""((pi)/(3))=-1`

B

`f""'((pi)/(3))=sqrt (3)`

C

`int_(0)^(pi)f(x)dx=0`

D

`int_(-pi)^(pi)f(x)dx=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the function \( f(x) = \begin{vmatrix} \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{vmatrix} \). ### Step 1: Write the Determinant We start with the determinant: \[ f(x) = \begin{vmatrix} \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{vmatrix} \] ### Step 2: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix, we have: - \( a = \cos x \), \( b = 1 \), \( c = 0 \) - \( d = 1 \), \( e = 2 \cos x \), \( f = 1 \) - \( g = 0 \), \( h = 1 \), \( i = 2 \cos x \) Substituting these values into the determinant formula, we get: \[ f(x) = \cos x \left( (2 \cos x)(2 \cos x) - (1)(1) \right) - 1 \left( (1)(2 \cos x) - (1)(0) \right) + 0 \] ### Step 3: Simplify the Expression Now, let's simplify the expression: \[ = \cos x \left( 4 \cos^2 x - 1 \right) - (2 \cos x) \] \[ = 4 \cos^3 x - \cos x - 2 \cos x \] \[ = 4 \cos^3 x - 3 \cos x \] ### Step 4: Recognize the Trigonometric Identity We can recognize that: \[ 4 \cos^3 x - 3 \cos x = \cos(3x) \] Thus, we have: \[ f(x) = \cos(3x) \] ### Step 5: Evaluate \( f\left(\frac{\pi}{3}\right) \) Now we will evaluate \( f\left(\frac{\pi}{3}\right) \): \[ f\left(\frac{\pi}{3}\right) = \cos\left(3 \cdot \frac{\pi}{3}\right) = \cos(\pi) = -1 \] ### Step 6: Find the Derivative \( f'(x) \) Next, we find the derivative \( f'(x) \): \[ f'(x) = -3 \sin(3x) \] ### Step 7: Evaluate \( f'\left(\frac{\pi}{3}\right) \) Now we evaluate \( f'\left(\frac{\pi}{3}\right) \): \[ f'\left(\frac{\pi}{3}\right) = -3 \sin\left(3 \cdot \frac{\pi}{3}\right) = -3 \sin(\pi) = 0 \] ### Step 8: Compute the Integral \( \int_0^\pi f(x) \, dx \) We compute the integral: \[ \int_0^\pi f(x) \, dx = \int_0^\pi \cos(3x) \, dx \] The integral of \( \cos(3x) \) is: \[ \frac{1}{3} \sin(3x) \Big|_0^\pi = \frac{1}{3} \left( \sin(3\pi) - \sin(0) \right) = \frac{1}{3} (0 - 0) = 0 \] ### Step 9: Compute the Integral \( \int_{-\pi}^\pi f(x) \, dx \) Using the property of integrals: \[ \int_{-\pi}^\pi f(x) \, dx = 2 \int_0^\pi f(x) \, dx = 2 \cdot 0 = 0 \] ### Final Result Thus, we have: - \( f\left(\frac{\pi}{3}\right) = -1 \) - \( f'\left(\frac{\pi}{3}\right) = 0 \) - \( \int_0^\pi f(x) \, dx = 0 \) - \( \int_{-\pi}^\pi f(x) \, dx = 0 \)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|23 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx| is equal to

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

Let f(x)=(2cosx-1)(2cos2x-1)(2cos2^2x-1)...(2cos2^(n-1) x-1), (where ngeq1) . Then prove that f((2pik)/(2^n+-1))=1 AAk in I .

|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),(-10,12,2)|=0

Let f(x)={x+2,-1lelt0 1,x=0 (x)/(2),0ltxle1

(lim)_(x->0)(cos2x-1)/(cosx-1)

int (cosx-cos2x)/(1-cosx) dx

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is