Home
Class 12
MATHS
If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x...

If `Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}|` =`ax^(3) +bx^(2)+cx+d`, then

A

a=0

B

b=0

C

c=0

D

d=141

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta(x) = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 7x^2 - 6x + 9 & 14x - 6 & 21 \end{vmatrix} \) and express it in the form \( ax^3 + bx^2 + cx + d \), we will follow these steps: ### Step 1: Write the Determinant We start by writing the determinant explicitly: \[ \Delta(x) = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 7x^2 - 6x + 9 & 14x - 6 & 21 \end{vmatrix} \] ### Step 2: Perform Row Operations We will simplify the determinant using row operations. We can manipulate row 3 by subtracting 7 times row 1 from it: \[ R_3 \rightarrow R_3 - 7R_1 \] This gives us: \[ \Delta(x) = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 0 & 14x - 6 - 7(2x - 5) & 21 - 21 \end{vmatrix} \] ### Step 3: Simplify Row 3 Calculating the new entries for row 3: - The second entry becomes: \[ 14x - 6 - 7(2x - 5) = 14x - 6 - 14x + 35 = 29 \] - The third entry is \( 0 \). Thus, the determinant simplifies to: \[ \Delta(x) = \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 & 3 \\ 3x^2 + x + 4 & 6x + 1 & 9 \\ 0 & 29 & 0 \end{vmatrix} \] ### Step 4: Expand the Determinant Using the third column to expand the determinant, we have: \[ \Delta(x) = 0 \cdot \text{(anything)} - 29 \cdot \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 \\ 3x^2 + x + 4 & 6x + 1 \end{vmatrix} \] ### Step 5: Calculate the 2x2 Determinant Now we need to calculate the 2x2 determinant: \[ \begin{vmatrix} x^2 - 5x + 3 & 2x - 5 \\ 3x^2 + x + 4 & 6x + 1 \end{vmatrix} = (x^2 - 5x + 3)(6x + 1) - (2x - 5)(3x^2 + x + 4) \] ### Step 6: Expand and Simplify Expanding both products: 1. \( (x^2 - 5x + 3)(6x + 1) = 6x^3 - 30x^2 + 18x + x^2 - 5x + 3 = 6x^3 - 29x^2 + 13x + 3 \) 2. \( (2x - 5)(3x^2 + x + 4) = 6x^3 + 2x^2 + 8x - 15x^2 - 5 - 20 = 6x^3 - 13x^2 - 10 \) Now subtract the second from the first: \[ (6x^3 - 29x^2 + 13x + 3) - (6x^3 - 13x^2 - 10) = -16x^2 + 23x + 13 \] ### Step 7: Final Determinant Expression Thus, we have: \[ \Delta(x) = -29(-16x^2 + 23x + 13) = 464x^2 - 667x - 377 \] ### Step 8: Identify Coefficients Now, we can express \( \Delta(x) \) in the form \( ax^3 + bx^2 + cx + d \): - \( a = 0 \) - \( b = -464 \) - \( c = 667 \) - \( d = 377 \) ### Conclusion Thus, we find that \( a = 0 \), \( b = 0 \), \( c = 0 \), and \( d = 141 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|23 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If |(x^2-5x+3, 2x-5, 3) (3x^2+x+4, 6x+1, 9) (7x^2-6x+9, 14 x-6, 21)| =a x^3+b x^2+c x+d then which of the following are correct? (a) a=0 (b) b=0 (c) c=0 (d) d=141

Let D(x)=|{:(x^2+4x-3, 2x+4,13),(2x^2+5x-9,4x+5,26),(8x^2-16x+1, 16x-6, 104):}|=alphax^3+betax^2 + gammax+delta then :

Solve (6x^2-5x-3)/(x^2-2x+6)le 4

lim_(x to 1)(x^(2)-6x+5)/(x^(2)+3x-4)=

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2) ,((x-1)^2, (x-2)^2, (x-3)^2), ((x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

Evaluate lim_(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 x - 27)

Differentiate wrto x: (5x^(2)+6x+7)/(2x^(2)+3x+4)

Let |{:(x,2,x),(x^(2),x,6),(x,x,6):}|=Ax^(4)+Bx^(3)+Cx^(2)+Dx+E the value of 5A+4B+3C+2D+E is equal to

Evaluate lim_(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) - 9x^(4) - x^(3) + 35x^(2) + 6x + 30)/(x^(5) - 2x^(4) + 4x^(2) - 9x + 6)

Simplify the following : 5x^(4) - 7x^(2) +8x - 1 +3x^(2) - 9x^(2) + 7 - 3x^(4)+11x - 2 +8x^(2)