Home
Class 12
MATHS
Find the angle between the pair of lines...

Find the angle between the pair of lines
`r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k))`
`r=5hat(i)-4hat(k)+mu(3hat(i)+2hat(j)+6hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the given pair of lines, we can use the formula for the cosine of the angle between two vectors. The lines are given in the vector form, and we can extract the direction vectors from them. ### Step 1: Identify the direction vectors of the lines The equations of the lines are given as: 1. \( r = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}) \) 2. \( r = 5\hat{i} - 4\hat{k} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k}) \) From these equations, we can identify the direction vectors: - For the first line, the direction vector \( \mathbf{b_1} = \hat{i} + 2\hat{j} + 2\hat{k} \) - For the second line, the direction vector \( \mathbf{b_2} = 3\hat{i} + 2\hat{j} + 6\hat{k} \) ### Step 2: Calculate the dot product of the direction vectors The dot product \( \mathbf{b_1} \cdot \mathbf{b_2} \) is calculated as follows: \[ \mathbf{b_1} \cdot \mathbf{b_2} = (1)(3) + (2)(2) + (2)(6) \] Calculating this gives: \[ \mathbf{b_1} \cdot \mathbf{b_2} = 3 + 4 + 12 = 19 \] ### Step 3: Calculate the magnitudes of the direction vectors Next, we need to calculate the magnitudes of \( \mathbf{b_1} \) and \( \mathbf{b_2} \): \[ |\mathbf{b_1}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] \[ |\mathbf{b_2}| = \sqrt{3^2 + 2^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7 \] ### Step 4: Use the cosine formula to find the angle Now we can use the formula for the cosine of the angle \( \theta \) between the two vectors: \[ \cos \theta = \frac{\mathbf{b_1} \cdot \mathbf{b_2}}{|\mathbf{b_1}| |\mathbf{b_2}|} \] Substituting the values we calculated: \[ \cos \theta = \frac{19}{3 \times 7} = \frac{19}{21} \] ### Step 5: Calculate the angle \( \theta \) Finally, to find the angle \( \theta \), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{19}{21}\right) \] ### Conclusion The angle between the given pair of lines is \( \theta = \cos^{-1}\left(\frac{19}{21}\right) \).
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the pairs of line r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) and hat(r)=5hat(i)-2hat(j)+mu(3hat(i)+2hat(j)+6hat(k)) .

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k)) .

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Consider the following 3lines in space L_1:r=3hat(i)-hat(j)+hat(k)+lambda(2hat(i)+4hat(j)-hat(k)) L_2: r=hat(i)+hat(j)-3hat(k)+mu(4hat(i)+2hat(j)+4hat(k)) L_3:=3hat(i)+2hat(j)-2hat(k)+t(2hat(i)+hat(j)+2hat(k)) Then, which one of the following part(s) is/ are in the same plane?

Find the angle between the lines vec r=3 hat i+2 hat j-4 hat k+lambda( hat i+2 hat j+2 hat k) a n d vec r=(5 hat j-2 hat k)+mu(3 hat i+2 hat j+6 hat k)dot

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the angle between the following pairs of lines: -> r=(3 hat i+2 hat j-4 hat k)+lambda( hat i+2 hat j+2 hat k)a n d\ -> r=(5 hat i-2 hat k)+mu(3 hat i+2 hat j+6 hat k)dot