Home
Class 12
MATHS
Find the foot of the perpendicular drawn...

Find the foot of the perpendicular drawn from the point `2 hat i- hat j+5 hat k` to the line ` vec r=(11 hat i-2 hat j-8 hat k)+lambda(10 hat i-4 hat j-11 hat k)dot` Also find the length of the perpendicular.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the foot of the perpendicular from the point \( P(2\hat{i} - \hat{j} + 5\hat{k}) \) to the line given by the vector equation \( \vec{r} = (11\hat{i} - 2\hat{j} - 8\hat{k}) + \lambda(10\hat{i} - 4\hat{j} - 11\hat{k}) \), we can follow these steps: ### Step 1: Understand the line equation The line can be expressed in terms of a point on the line and a direction vector. The point on the line is \( A(11, -2, -8) \) and the direction vector is \( \vec{b} = (10\hat{i} - 4\hat{j} - 11\hat{k}) \). ### Step 2: Write the position vector of the foot of the perpendicular Let \( M \) be the foot of the perpendicular from point \( P \) to the line. The position vector of point \( M \) can be expressed as: \[ \vec{m} = (11 + 10\lambda)\hat{i} + (-2 - 4\lambda)\hat{j} + (-8 - 11\lambda)\hat{k} \] ### Step 3: Find the vector \( \vec{PM} \) The vector \( \vec{PM} \) from point \( P \) to point \( M \) is given by: \[ \vec{PM} = \vec{m} - \vec{p} = \left((11 + 10\lambda - 2)\hat{i} + (-2 - 4\lambda + 1)\hat{j} + (-8 - 11\lambda - 5)\hat{k}\right) \] This simplifies to: \[ \vec{PM} = (9 + 10\lambda)\hat{i} + (-1 - 4\lambda)\hat{j} + (-13 - 11\lambda)\hat{k} \] ### Step 4: Set up the perpendicularity condition Since \( \vec{PM} \) is perpendicular to the direction vector \( \vec{b} \), we have: \[ \vec{PM} \cdot \vec{b} = 0 \] Calculating the dot product: \[ (9 + 10\lambda) \cdot 10 + (-1 - 4\lambda) \cdot (-4) + (-13 - 11\lambda) \cdot (-11) = 0 \] Expanding this gives: \[ 90 + 100\lambda + 4 + 16\lambda + 143 + 121\lambda = 0 \] Combining like terms: \[ (100 + 16 + 121)\lambda + (90 + 4 + 143) = 0 \] This simplifies to: \[ 237\lambda + 237 = 0 \] Thus, we find: \[ \lambda = -1 \] ### Step 5: Find the coordinates of the foot of the perpendicular Substituting \( \lambda = -1 \) back into the equation for \( \vec{m} \): \[ \vec{m} = (11 + 10(-1))\hat{i} + (-2 - 4(-1))\hat{j} + (-8 - 11(-1))\hat{k} \] This simplifies to: \[ \vec{m} = (11 - 10)\hat{i} + (-2 + 4)\hat{j} + (-8 + 11)\hat{k} = 1\hat{i} + 2\hat{j} + 3\hat{k} \] Thus, the coordinates of the foot of the perpendicular \( M \) are \( (1, 2, 3) \). ### Step 6: Calculate the length of the perpendicular The length of the perpendicular \( PM \) is given by: \[ \text{Length} = |\vec{PM}| = \sqrt{(1 - 2)^2 + (2 + 1)^2 + (3 - 5)^2} \] Calculating this gives: \[ = \sqrt{(-1)^2 + (3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] ### Final Answer The foot of the perpendicular is at the point \( (1, 2, 3) \) and the length of the perpendicular is \( \sqrt{14} \).
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the foot of the perpendicular drawn from the point hat i+6 hat j+3 hat k to the line vec r= hat j+2 hat k+lambda( hat i+2 hat j+3 hat k)dot Also, find the length of the perpendicular.

Fine the equation of the perpendicular drawn from the point P(-1,\ 3,\ 2) to the line -> r=(2 hat j+3 hat k)+lambda( hat i+2 hat j+3 hat k)dot Also find the coordinates of the foot of the perpendicular from Pdot

Find the distance of the point 2 hat i+ hat j- hat k from the plane vec r( hat i-2 hat j+4 hat k)=9 .

Find the length of the perpendicular drawn from the point (5,4,-1) . to the line vec r= hat i+lambda(2 hat i+9 hat j+5 hat k)dot

Find the length of the perpendicular drawn from the point (5,4,-1) to the line vec r= hat i+lambda(2 hat i+9 hat j+5 hat k), wher lambda is a parameter.

Find the unit vector perpendicular to the plane vec rdot(2 hat i+ hat j+2 hat k)=5.

Find the equation of the line passing through the point hat i+ hat j- hat k and perpendicular to the lines vec r= hat i+lambda(2 hat i+ hat j-3 hat k)a n d vec r=(2 hat i+ hat j- hat k)dot

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r.(2 hat i- hat j+ hat k)=4.

Find the equation of a line passing through a point (2, -1, 3) and parallel to the line vec r=( hat i+ hat j)+lambda(2 hat i+ hat j-2 hat k)dot