Home
Class 12
MATHS
Find the length of perpendicular from P(...

Find the length of perpendicular from `P(2, -3, 1)` to the `(x+1)/(2)=(y-3)/(3)=(z+2)/(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the length of the perpendicular from the point \( P(2, -3, 1) \) to the line given by the symmetric equations \( \frac{x+1}{2} = \frac{y-3}{3} = \frac{z+2}{-1} \), we can follow these steps: ### Step 1: Parameterize the Line The symmetric equations can be expressed in terms of a parameter \( \lambda \): \[ \frac{x+1}{2} = \frac{y-3}{3} = \frac{z+2}{-1} = \lambda \] From this, we can derive the parametric equations for the line: \[ x = 2\lambda - 1, \quad y = 3\lambda + 3, \quad z = -\lambda - 2 \] ### Step 2: Find Direction Ratios of the Line The direction ratios of the line can be extracted from the coefficients of \( \lambda \): \[ \text{Direction ratios} = (2, 3, -1) \] ### Step 3: Find the Point on the Line Closest to Point P Let the point on the line corresponding to the parameter \( \lambda \) be \( Q(2\lambda - 1, 3\lambda + 3, -\lambda - 2) \). The vector \( \overrightarrow{PQ} \) from point \( P \) to point \( Q \) is: \[ \overrightarrow{PQ} = (2\lambda - 1 - 2, 3\lambda + 3 + 3, -\lambda - 2 - 1) \] This simplifies to: \[ \overrightarrow{PQ} = (2\lambda - 3, 3\lambda + 6, -\lambda - 3) \] ### Step 4: Set Up the Perpendicular Condition For \( \overrightarrow{PQ} \) to be perpendicular to the direction ratios of the line, the dot product must equal zero: \[ (2\lambda - 3, 3\lambda + 6, -\lambda - 3) \cdot (2, 3, -1) = 0 \] Calculating the dot product: \[ (2\lambda - 3) \cdot 2 + (3\lambda + 6) \cdot 3 + (-\lambda - 3) \cdot (-1) = 0 \] This expands to: \[ 4\lambda - 6 + 9\lambda + 18 + \lambda + 3 = 0 \] Combining like terms gives: \[ 14\lambda + 15 = 0 \] Thus, solving for \( \lambda \): \[ \lambda = -\frac{15}{14} \] ### Step 5: Find the Coordinates of Point Q Substituting \( \lambda \) back into the parametric equations: \[ x = 2\left(-\frac{15}{14}\right) - 1 = -\frac{30}{14} - \frac{14}{14} = -\frac{44}{14} \] \[ y = 3\left(-\frac{15}{14}\right) + 3 = -\frac{45}{14} + \frac{42}{14} = -\frac{3}{14} \] \[ z = -\left(-\frac{15}{14}\right) - 2 = \frac{15}{14} - \frac{28}{14} = -\frac{13}{14} \] Thus, the coordinates of point \( Q \) are: \[ Q\left(-\frac{44}{14}, -\frac{3}{14}, -\frac{13}{14}\right) \] ### Step 6: Calculate the Distance \( PQ \) Using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] where \( P(2, -3, 1) \) and \( Q\left(-\frac{44}{14}, -\frac{3}{14}, -\frac{13}{14}\right) \): \[ d = \sqrt{\left(2 + \frac{44}{14}\right)^2 + \left(-3 + \frac{3}{14}\right)^2 + \left(1 + \frac{13}{14}\right)^2} \] Calculating each term: 1. \( 2 + \frac{44}{14} = \frac{28}{14} + \frac{44}{14} = \frac{72}{14} \) 2. \( -3 + \frac{3}{14} = -\frac{42}{14} + \frac{3}{14} = -\frac{39}{14} \) 3. \( 1 + \frac{13}{14} = \frac{14}{14} + \frac{13}{14} = \frac{27}{14} \) Thus, the distance becomes: \[ d = \sqrt{\left(\frac{72}{14}\right)^2 + \left(-\frac{39}{14}\right)^2 + \left(\frac{27}{14}\right)^2} \] Factoring out \( \frac{1}{14^2} \): \[ d = \frac{1}{14} \sqrt{72^2 + 39^2 + 27^2} \] Calculating: \[ 72^2 = 5184, \quad 39^2 = 1521, \quad 27^2 = 729 \] Adding these: \[ 5184 + 1521 + 729 = 7434 \] Thus: \[ d = \frac{\sqrt{7434}}{14} \] ### Step 7: Final Calculation Calculating \( \sqrt{7434} \) gives approximately \( 86.22 \): \[ d \approx \frac{86.22}{14} \approx 6.15 \] ### Final Answer The length of the perpendicular from point \( P(2, -3, 1) \) to the line is approximately \( 6.15 \) units. ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the foot of the perpendicular from P(1, 2, -3) on the line (x+1)/(2)=(y-3)/(-2)=(z)/(-1) , also obtain the equation and the length of perpendicular. Also find the image of the point in this given line.

Find the foot of the perpendicular from ( 1,2,-3) to th lin (x+1)/2=(y-3)/(-2)=(z-3)/(-1) .

The length of the perpendicular from P(1,0,2) on the line (x+1)/(3)=(y-2)/(-2)=(z+1)/(-1) is

Find the length of the perpendicular from point (3,4,5) on the line (x-2)/2=(y-3)/5=(z-1)/3.

Find the foot of perpendicular from (0, 2, 3) to the line (x-3)/2= (y-1)/2=(z+4)/3 .

The length of perpendicular from the point P(1,-1,2) on the line (x+1)/(2) = (y-2)/(-3) = (z+2)/(4) is

Find the length of the perpendicular from the point (1,2,3) to the line (x-6)/3=(y-7)/2=(z-7)/(-2)dot

find the foot of perpendicular form (0,2,7) to lien (x+2)/(-1)=(y-1)/3=(z-3)/(-2)

Find the length of perpendicular drawn from point (2,-1) to the line 3x+4y-11=0 .

Find the length of the perpendicular drawn from point (2,3,4) to line (4-x)/2=y/6=(1-z)/3dot