Home
Class 12
MATHS
Find the shortest distance and the vecto...

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by `r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance and the vector equation of the line of shortest distance between the given lines, we will follow these steps: ### Step 1: Identify the lines and their components The lines are given in vector form: 1. Line 1: \( \mathbf{r_1} = (3\hat{i} + 8\hat{j} + 3\hat{k}) + \lambda(3\hat{i} - \hat{j} + \hat{k}) \) - Position vector \( \mathbf{a_1} = 3\hat{i} + 8\hat{j} + 3\hat{k} \) - Direction vector \( \mathbf{b_1} = 3\hat{i} - \hat{j} + \hat{k} \) 2. Line 2: \( \mathbf{r_2} = (-3\hat{i} - 7\hat{j} + 6\hat{k}) + \mu(-3\hat{i} + 2\hat{j} + 4\hat{k}) \) - Position vector \( \mathbf{a_2} = -3\hat{i} - 7\hat{j} + 6\hat{k} \) - Direction vector \( \mathbf{b_2} = -3\hat{i} + 2\hat{j} + 4\hat{k} \) ### Step 2: Check if the lines are parallel or skew To check if the lines are parallel, we need to see if the direction vectors \( \mathbf{b_1} \) and \( \mathbf{b_2} \) are proportional. We can do this by checking if the ratios of their components are equal: - For \( \mathbf{b_1} = (3, -1, 1) \) and \( \mathbf{b_2} = (-3, 2, 4) \): - The ratios \( \frac{3}{-3}, \frac{-1}{2}, \frac{1}{4} \) are not equal, hence the lines are not parallel and must be skew lines. ### Step 3: Use the formula for the shortest distance between skew lines The formula for the shortest distance \( d \) between two skew lines is given by: \[ d = \frac{|\mathbf{b_1} \times \mathbf{b_2} \cdot (\mathbf{a_2} - \mathbf{a_1})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] ### Step 4: Calculate \( \mathbf{b_1} \times \mathbf{b_2} \) We calculate the cross product \( \mathbf{b_1} \times \mathbf{b_2} \): \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-1)(4) - (1)(2)) - \hat{j}((3)(4) - (1)(-3)) + \hat{k}((3)(2) - (-1)(-3)) \] \[ = \hat{i}(-4 - 2) - \hat{j}(12 + 3) + \hat{k}(6 - 3) \] \[ = -6\hat{i} - 15\hat{j} + 3\hat{k} \] ### Step 5: Calculate \( \mathbf{a_2} - \mathbf{a_1} \) Now we find \( \mathbf{a_2} - \mathbf{a_1} \): \[ \mathbf{a_2} - \mathbf{a_1} = (-3\hat{i} - 7\hat{j} + 6\hat{k}) - (3\hat{i} + 8\hat{j} + 3\hat{k}) \] \[ = (-3 - 3)\hat{i} + (-7 - 8)\hat{j} + (6 - 3)\hat{k} \] \[ = -6\hat{i} - 15\hat{j} + 3\hat{k} \] ### Step 6: Calculate the dot product \( \mathbf{b_1} \times \mathbf{b_2} \cdot (\mathbf{a_2} - \mathbf{a_1}) \) Now we compute the dot product: \[ \mathbf{b_1} \times \mathbf{b_2} \cdot (\mathbf{a_2} - \mathbf{a_1}) = (-6\hat{i} - 15\hat{j} + 3\hat{k}) \cdot (-6\hat{i} - 15\hat{j} + 3\hat{k}) \] \[ = (-6)(-6) + (-15)(-15) + (3)(3) \] \[ = 36 + 225 + 9 = 270 \] ### Step 7: Calculate the magnitude \( |\mathbf{b_1} \times \mathbf{b_2}| \) Now we calculate the magnitude of \( \mathbf{b_1} \times \mathbf{b_2} \): \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{(-6)^2 + (-15)^2 + (3)^2} \] \[ = \sqrt{36 + 225 + 9} = \sqrt{270} \] ### Step 8: Calculate the shortest distance \( d \) Now we can substitute these values into the distance formula: \[ d = \frac{270}{\sqrt{270}} = \sqrt{270} \] ### Step 9: Simplify \( \sqrt{270} \) We can simplify \( \sqrt{270} \): \[ \sqrt{270} = \sqrt{9 \times 30} = 3\sqrt{30} \] ### Step 10: Find the vector equation of the line of shortest distance The vector equation of the line of shortest distance can be found using the point on each line and the direction vector of the shortest line which is \( \mathbf{b_1} \times \mathbf{b_2} \). Let \( \mathbf{p_1} = (3, 8, 3) \) and \( \mathbf{p_2} = (-3, -7, 6) \). The direction vector of the line of shortest distance is \( \mathbf{b_1} \times \mathbf{b_2} \). The vector equation of the line can be represented as: \[ \mathbf{r} = \mathbf{p_1} + t(\mathbf{b_1} \times \mathbf{b_2}) \quad \text{and} \quad \mathbf{r} = \mathbf{p_2} + s(\mathbf{b_1} \times \mathbf{b_2}) \] ### Final Answer The shortest distance between the lines is \( 3\sqrt{30} \) and the vector equation of the line of shortest distance can be expressed as: \[ \mathbf{r} = (3\hat{i} + 8\hat{j} + 3\hat{k}) + t(-6\hat{i} - 15\hat{j} + 3\hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

Find the angle between the pairs of line r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) and hat(r)=5hat(i)-2hat(j)+mu(3hat(i)+2hat(j)+6hat(k)) .

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

Find the shortest distance between the lines -> r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and -> r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

The angle between two vectors given by 6hat(i)+6hat(j)-3hat(k) and 7hat(i)+4hat(j)+4hat(k) is

Find the angle between the pair of lines r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) r=5hat(i)-4hat(k)+mu(3hat(i)+2hat(j)+6hat(k))

Find the shortest distance between the lines: vec r=6 hat i+2 hat j+2 hat k+lambda\ ( hat i-2 hat j+2 hat k) and vec r=-4 hat i- hat k+mu\ (3 hat i-\ 2 hat j-\ 2 hat k)