Home
Class 12
MATHS
Find the shortest distance between li...

Find the shortest distance between lines ` vec r=( hat i+2 hat j+ hat k)+lambda(2 hat i+ hat j+2 hat k)a n d vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we can follow these steps: ### Step 1: Identify the lines and their direction vectors The lines are given in vector form: 1. Line 1: \(\vec{r_1} = \hat{i} + 2\hat{j} + \hat{k} + \lambda(2\hat{i} + \hat{j} + 2\hat{k})\) 2. Line 2: \(\vec{r_2} = 2\hat{i} - \hat{j} - \hat{k} + \mu(2\hat{i} + \hat{j} + 2\hat{k})\) From these equations, we can extract the direction vectors: - Direction vector of Line 1, \(\vec{B} = 2\hat{i} + \hat{j} + 2\hat{k}\) - Direction vector of Line 2, \(\vec{B'} = 2\hat{i} + \hat{j} + 2\hat{k}\) ### Step 2: Check if the lines are parallel or skew Since both lines have the same direction vector \(\vec{B}\), they are parallel lines. ### Step 3: Identify the position vectors of the lines The position vectors (points on the lines) are: - Point on Line 1, \(\vec{A_1} = \hat{i} + 2\hat{j} + \hat{k}\) - Point on Line 2, \(\vec{A_2} = 2\hat{i} - \hat{j} - \hat{k}\) ### Step 4: Calculate the vector between the two points We find the vector \(\vec{A_2} - \vec{A_1}\): \[ \vec{A_2} - \vec{A_1} = (2\hat{i} - \hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + \hat{k}) = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (-1 - 1)\hat{k} \] \[ = \hat{i} - 3\hat{j} - 2\hat{k} \] ### Step 5: Use the formula for the distance between two parallel lines The formula for the distance \(d\) between two parallel lines is given by: \[ d = \frac{|\vec{B} \cdot (\vec{A_2} - \vec{A_1})|}{|\vec{B}|} \] Where \(\vec{B}\) is the direction vector. ### Step 6: Calculate the dot product Now, we compute the dot product \(\vec{B} \cdot (\vec{A_2} - \vec{A_1})\): \[ \vec{B} = 2\hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{A_2} - \vec{A_1} = \hat{i} - 3\hat{j} - 2\hat{k} \] \[ \vec{B} \cdot (\vec{A_2} - \vec{A_1}) = (2)(1) + (1)(-3) + (2)(-2) = 2 - 3 - 4 = -5 \] ### Step 7: Calculate the magnitude of the direction vector Next, we calculate the magnitude of \(\vec{B}\): \[ |\vec{B}| = \sqrt{(2^2) + (1^2) + (2^2)} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] ### Step 8: Substitute into the distance formula Now substituting into the distance formula: \[ d = \frac{|-5|}{3} = \frac{5}{3} \] ### Final Answer The shortest distance between the two parallel lines is \(\frac{5}{3}\) units. ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between lines vec r=( hat i+2 hat j+ hat k)+lambda(hat i- hat j+hat k)a n d vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)dot

Find the shortest distance between the lines: vec r= hat i+2 hat j+3 hat k+lambda( hat i-3 hat j+2 hat k)a n d\ vec r=4 hat i+5 hat j+6 hat k+mu(2 hat i+3 hat j+ hat k)dot

Find the shortest distance between the lines -> r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and -> r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines: vec r=6 hat i+2 hat j+2 hat k+lambda( hat i-2 hat j+2 hat k)a n d\ vec r=-4 hat i- hat k+mu(3 hat i-2 hat j-2 hat k)dot

Find the shortest distance between the lines vec r=(4 hat i- hat j)+lambda( hat i+2 hat j-3 hat k)a n d vec r=( hat i- hat j+2 hat k)+mu(2 hat i+4 hat j-5 hat k)dot .

Find the shortest distance between the lines: vec r=6 hat i+2 hat j+2 hat k+lambda\ ( hat i-2 hat j+2 hat k) and vec r=-4 hat i- hat k+mu\ (3 hat i-\ 2 hat j-\ 2 hat k)

Find the shortest distance between the following lines: vec r=2 hat i-5 hat j+ hat k+lambda(3 hat i+2 hat j+6 hat k) and vec r=7 hat i-6 hat k+mu( hat i+2 hat j+2 hat k)

Find the shortest distance between lines -> r=6 hat i+2 hat j+ hat k+lambda( hat i-2 hat j+2 hat k) and -> r=-4 hat i- hat k+mu(3 hat i-2 hat j-2 hat k) .