Home
Class 12
MATHS
The centre of the circle given by vec r...

The centre of the circle given by `vec r* (hat i+ 2hat j + 2hat k) = 15 and |vec r-(hat j + 2hat k)| = 4` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the center of the circle defined by the given equations, we will follow these steps: ### Step 1: Convert the equations to Cartesian form The first equation is given as: \[ \vec{r} \cdot (\hat{i} + 2\hat{j} + 2\hat{k}) = 15 \] This can be expanded in Cartesian coordinates as: \[ x + 2y + 2z = 15 \] This represents a plane. The second equation is given as: \[ |\vec{r} - (\hat{j} + 2\hat{k})| = 4 \] This can be rewritten as: \[ \sqrt{(x - 0)^2 + (y - 1)^2 + (z - 2)^2} = 4 \] Squaring both sides gives us: \[ (x - 0)^2 + (y - 1)^2 + (z - 2)^2 = 16 \] This represents a sphere with center at (0, 1, 2) and radius 4. ### Step 2: Identify the center of the sphere From the equation of the sphere, we can identify its center: \[ \text{Center of sphere} = (0, 1, 2) \] ### Step 3: Find the normal vector to the plane The normal vector to the plane \(x + 2y + 2z = 15\) can be derived from the coefficients of \(x\), \(y\), and \(z\): \[ \text{Normal vector} = (1, 2, 2) \] ### Step 4: Set up the line joining the center of the sphere to the plane The line joining the center of the sphere (0, 1, 2) to any point on the plane can be represented parametrically as: \[ \begin{align*} x &= 0 + t \cdot 1 = t \\ y &= 1 + t \cdot 2 = 1 + 2t \\ z &= 2 + t \cdot 2 = 2 + 2t \end{align*} \] ### Step 5: Substitute into the plane equation Substituting the parametric equations into the plane equation: \[ t + 2(1 + 2t) + 2(2 + 2t) = 15 \] Expanding this gives: \[ t + 2 + 4t + 4 + 4t = 15 \] Combining like terms: \[ 9t + 6 = 15 \] Solving for \(t\): \[ 9t = 9 \implies t = 1 \] ### Step 6: Find the coordinates of the center of the circle Now substituting \(t = 1\) back into the parametric equations: \[ \begin{align*} x &= 1 \\ y &= 1 + 2(1) = 3 \\ z &= 2 + 2(1) = 4 \end{align*} \] Thus, the center of the circle is: \[ \text{Center of circle} = (1, 3, 4) \] ### Final Answer: The center of the circle is \((1, 3, 4)\). ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The centre of the circle given by vec rdot( hat i+2 hat j+2 hat k)=15a n d| vec r-( hat j+2 hat k)|=4 is a. (0,1,2) b. (1,3,4) c. (-1,3,4) d. none of these

A vector parallel to the line of intersection of the planes vec r=dot(3 hat i- hat j+ hat k)=1\ a n d\ vec rdot(( hat i+4 hat j-2 hat k)=2 is a. -2 hat i+7 hat j+13 hat k b. 2 hat i+7 hat j-13 hat k c. -2i-7j+13 k d. 2i+7j+13 k

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Determine the shortest distance between the pair of lines : vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d\ vec r=(2 hat i- hat k)+mu(2 hat i+2 hat k)dot

If the vectors given by vec(A) = hat(i) + 2hat(j) + 2hat(k) and vec(B) = hat(i) - hat(j) + n hat(k) are prerpendicular to each other find the value of n .

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

Find vec adot vec b when: vec a= hat i-2 hat j+ hat k\ a n d\ vec b=4 hat i-4 hat j+7 hat k

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the equation of the line passing through the point hat i+ hat j- hat k and perpendicular to the lines vec r= hat i+lambda(2 hat i+ hat j-3 hat k)a n d vec r=(2 hat i+ hat j- hat k)dot