Home
Class 12
MATHS
Equation of the plane that contains the ...

Equation of the plane that contains the lines `r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k))` is

A

`rcdot(2hat(i)+hat(j)-3hat(k))=-4`

B

`rtimes(-hat(i)+hat(j)+hat(k))=0`

C

`rcdot(-hat(i)+hat(j)+hat(k))=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
(c)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

The vector equation of the plane containing the line vec r=(-2 hat i-3 hat j+4 hat k)+lambda(3 hat i-2 hat j- hat k) and the point hat i+2 hat j+3 hat k is a. vec rdot(( hat i+3 hat k)=10 b. vec rdot(( hat i-3 hat k)=10 c. vec rdot((3 hat i+ hat k)=10 d. none of these

Consider the following 3lines in space L_1:r=3hat(i)-hat(j)+hat(k)+lambda(2hat(i)+4hat(j)-hat(k)) L_2: r=hat(i)+hat(j)-3hat(k)+mu(4hat(i)+2hat(j)+4hat(k)) L_3:=3hat(i)+2hat(j)-2hat(k)+t(2hat(i)+hat(j)+2hat(k)) Then, which one of the following part(s) is/ are in the same plane?

Find the vector and Cartesian equations of the plane containing the two lines vec r=2 hat i+ hat j-3 hat k+lambda( hat i+2 hat j+5 hat k)a n d , vec r=3 hat i+3 hat j+2 hat k+mu(3 hat i-2 hat j+ 5hat k)

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Prove that lines vec( r)= (hat(i)+ hat(j) + hat(k))+ t(hat(i) - hat(j) + hat(k)) and vec(r ) = (3hat(i) - hat(k)) + s(4hat(j) - 16hat(k)) intersect. Also find the position vector of their point of intersection

Find the shortest distance between lines -> r=6 hat i+2 hat j+ hat k+lambda( hat i-2 hat j+2 hat k) and -> r=-4 hat i- hat k+mu(3 hat i-2 hat j-2 hat k) .

A vector parallel to the line of intersection of the planes overset(to)( r) (3 hat(i) - hat(j) + hat(k) )=5 and overset(to) (r ) (hat(i) +4 hat(j) - 2 hat(k) )=3 is