Home
Class 12
MATHS
The distance between the line r=2hat(i)-...

The distance between the line `r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k))` and the plane `rcdot(hat(i)+5hat(j)+hat(k))=5,` is

A

`(10)/(9)`

B

`(10)/(3sqrt(3))`

C

`(10)/(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the distance between the given line and the plane, we can follow these steps: ### Step 1: Identify the line and the plane equations The line is given by: \[ \mathbf{r} = (2\hat{i} - 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + 4\hat{k}) \] This can be rewritten as: \[ \mathbf{r} = (2 + \lambda)\hat{i} + (-2 - \lambda)\hat{j} + (3 + 4\lambda)\hat{k} \] The plane is given by the equation: \[ \mathbf{r} \cdot (\hat{i} + 5\hat{j} + \hat{k}) = 5 \] This can be expressed as: \[ x + 5y + z = 5 \] ### Step 2: Check if the line is parallel to the plane The direction vector of the line is: \[ \mathbf{d} = \hat{i} - \hat{j} + 4\hat{k} \] The normal vector of the plane is: \[ \mathbf{n} = \hat{i} + 5\hat{j} + \hat{k} \] To check if the line is parallel to the plane, we need to see if \(\mathbf{d} \cdot \mathbf{n} = 0\): \[ \mathbf{d} \cdot \mathbf{n} = (1)(1) + (-1)(5) + (4)(1) = 1 - 5 + 4 = 0 \] Since the dot product is zero, the line is indeed parallel to the plane. ### Step 3: Find a point on the line To find a specific point on the line, we can set \(\lambda = 0\): \[ \text{Point on the line} = (2, -2, 3) \] ### Step 4: Calculate the distance from the point to the plane We can use the formula for the distance \(D\) from a point \((x_0, y_0, z_0)\) to the plane \(Ax + By + Cz + D = 0\): \[ D = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \] For our plane \(x + 5y + z - 5 = 0\), we have: - \(A = 1\) - \(B = 5\) - \(C = 1\) - \(D = -5\) Substituting the point \((2, -2, 3)\): \[ D = \frac{|1(2) + 5(-2) + 1(3) - 5|}{\sqrt{1^2 + 5^2 + 1^2}} = \frac{|2 - 10 + 3 - 5|}{\sqrt{1 + 25 + 1}} = \frac{|-10|}{\sqrt{27}} = \frac{10}{\sqrt{27}} = \frac{10}{3\sqrt{3}} \] ### Step 5: Simplify the distance To express the distance in a more standard form: \[ D = \frac{10\sqrt{3}}{9} \] ### Final Answer The distance between the line and the plane is: \[ \frac{10\sqrt{3}}{9} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot( hat i+5 hat j+ hat k)=5.

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k)) .

Find the angle between the line -> r=(2 hat i+3 hat j+9 hat k)+lambda(2 hat i+3 hat j+4 hat k) and the plane -> r(dot( hat i+ hat j+ hat k))=5.

Find the angle between the line vec r = (2 hat i-hat j +3 hat k)+ lambda (3 hat i-hat j+2 hat k ) and the plane vec r.(hat i + hat j + hat k)=3

Find the angle between the lines vec r= dot( hat i+2 hat j- hat k)+lambda( hat i- hat j+ hat k) and the plane vec r.(2 hat i- hat j+ hat k)=4.

Find the angle between the pairs of line r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) and hat(r)=5hat(i)-2hat(j)+mu(3hat(i)+2hat(j)+6hat(k)) .

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the distance of the point ( 1, 5, 10) from the point of intersection of the line -> r=2 hat i- hat j+2 hat k+lambda(3 hat i+4 hat j+2 hat k) and the plane -> r=( hat i- hat j+ hat k)=5 .