Home
Class 12
MATHS
The Cartesian equation of the plane ...

The Cartesian equation of the plane ` vec r=(1+lambda-mu) hat i+(2-lambda) hat j+(3-2lambda+2mu) hat k` is a. `2x+y=5` b. `2x-y=5` c. `2x+z=5` d. `2x-z=5`

A

`2x+y=5`

B

`2x-y=5`

C

`2x+z=5`

D

`2x-z=5`

Text Solution

Verified by Experts

The correct Answer is:
(c)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the vector equation of the following plane in non-parametric form: vec r=(lambda-2mu) hat i+(3-mu) hat j+(2lambda+mu) hat k .

Find the vector equation of the following planes in non parametric form: -> r=(lambda-2mu) hat i+(3-mu) hat j+(2lambda+mu) hat k

Find the shortest distance between the lines vec r=(1-lambda) hat i+(lambda-2) hat j+(3-2lambda) hat k and vec r=(mu+1) hat i+(2mu+1) hat kdot

Find the shortest distance between the following pairs of line whose vector equation are: vec r=(lambda-1) hat i+(lambda+1) hat j-(1+lambda) hat k\ a n d\ vec r=(1-mu) hat i+(2mu-1) hat j+(mu+2) hat k .

Find the vector and Cartesian equations of the plane containing the two lines vec r=2 hat i+ hat j-3 hat k+lambda( hat i+2 hat j+5 hat k)a n d , vec r=3 hat i+3 hat j+2 hat k+mu(3 hat i-2 hat j+ 5hat k)

Find lambda and mu if (2 hat i+6 hat j+27 hat k)xx( hat i+lambda hat j+mu hat k)= vec 0 .

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot( hat i+5 hat j+ hat k)=5.

Find the vector equation of the following planes in Cartesian form: vec r= hat i- hat j+lambda( hat i+ hat j+ hat k)+mu( hat i-2 hat j+3 hat k)dot

Find the angel between the planes 2x+y-2z+3=0a n d vec rdot(6 hat i+3 hat j+2 hat k)=5.

The number of distinct real values of lambda , for which the vectors -lambda^2 hat i+ hat j+k , hat i-lambda^2 hat j+ hat ka n d hat i+ hat j-lambda^2 hat k are coplanar is a. zero b. one c. two d. three