Home
Class 12
MATHS
Two line whose are (x-3)/(2)=(y-2)/(3)=(...

Two line whose are `(x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3)` lie in the same plane, then,
Q. Point of intersection of the lines lies on

A

`3x+y+z=20`

B

`2x+y+z=25`

C

`3x+2y+z=24`

D

`x=y=z`

Text Solution

Verified by Experts

The correct Answer is:
(d)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Two line whose are (x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same plane, then, Q. The value of sin^(-1)sinlambda is equal to

Two line whose equations are (x-3)/(2)=(y-2)/(3)=(z-1)/(3) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) find the angle between them

Lines whose equation are (x-3)/2=(y-2)/3=(z-1)/(lamda) and (x-2)/3=(y-3)/2=(z-2)/3 lie in same plane, then. The value of sin^(-1)sinlamda is equal to

Lines whose equation are (x-3)/2=(y-2)/3=(z-1)/(lamda) and (x-2)/3=(y-3)/2=(z-2)/3 lie in same plane, then. Angle between the plane containing both lines and the plane 4x+y+2z=0 is

Show that the lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) " and " (x-4)/(5)=(y-1)/(2)=z intersect each other . Find their point of intersection.

If the straight lines (x-1)/(k)=(y-2)/(2)=(z-3)/(3) and (x-2)/(3)=(y-3)/(k)=(z-1)/(2) intersect at a point, then the integer k is equal to

Two lines (x-1)/(2)=(y-2)/(3)=(z-3)/(4) and (x-4)/(5)=(y-1)/(2)=(z)/(1) intersect at a point P. If the distance of P from the plane 2x-3y+6z=7 is lambda units, then the value of 49lambda is equal to

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

Show that the two lines (x-1)/2=(y-2)/3=(z-3)/4 and (x-4)/5=(y-1)/2=z intersect. Find also the point of intersection of these lines.

If the lines (x-3)/(2)=(y-5)/(2)=(z-4)/(lambda) and (x-2)/(lambda)=(y-6)/(4)=(z-5)/(2) intersect at a point (alpha, beta, gamma) , then the greatest value of lambda is equal to