To find the value of \( \lambda \) such that the shortest distance between the given lines is \( \lambda \sqrt{30} \), we will follow these steps:
### Step 1: Identify the lines and their vector forms
The first line is given by:
\[
\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}
\]
This can be expressed in vector form as:
\[
\mathbf{r_1} = (3, 8, 3) + \lambda (3, -1, 1)
\]
where \( \mathbf{a_1} = (3, 8, 3) \) and \( \mathbf{b_1} = (3, -1, 1) \).
The second line is given by:
\[
\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}
\]
This can be expressed in vector form as:
\[
\mathbf{r_2} = (-3, -7, 6) + \mu (-3, 2, 4)
\]
where \( \mathbf{a_2} = (-3, -7, 6) \) and \( \mathbf{b_2} = (-3, 2, 4) \).
### Step 2: Calculate \( \mathbf{a_2} - \mathbf{a_1} \)
Now, we calculate \( \mathbf{a_2} - \mathbf{a_1} \):
\[
\mathbf{a_2} - \mathbf{a_1} = (-3, -7, 6) - (3, 8, 3) = (-6, -15, 3)
\]
### Step 3: Calculate \( \mathbf{b_1} \times \mathbf{b_2} \)
Next, we compute the cross product \( \mathbf{b_1} \times \mathbf{b_2} \):
\[
\mathbf{b_1} = (3, -1, 1), \quad \mathbf{b_2} = (-3, 2, 4)
\]
Using the determinant to find the cross product:
\[
\mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & -1 & 1 \\
-3 & 2 & 4
\end{vmatrix}
\]
Calculating the determinant:
\[
= \mathbf{i}((-1)(4) - (1)(2)) - \mathbf{j}((3)(4) - (1)(-3)) + \mathbf{k}((3)(2) - (-1)(-3))
\]
\[
= \mathbf{i}(-4 - 2) - \mathbf{j}(12 + 3) + \mathbf{k}(6 - 3)
\]
\[
= -6\mathbf{i} - 15\mathbf{j} + 3\mathbf{k}
\]
Thus,
\[
\mathbf{b_1} \times \mathbf{b_2} = (-6, -15, 3)
\]
### Step 4: Calculate the magnitudes
Now, we calculate the magnitude of \( \mathbf{b_1} \times \mathbf{b_2} \):
\[
|\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{(-6)^2 + (-15)^2 + 3^2} = \sqrt{36 + 225 + 9} = \sqrt{270}
\]
### Step 5: Use the shortest distance formula
The formula for the shortest distance \( d \) between two skew lines is given by:
\[
d = \frac{|(\mathbf{a_2} - \mathbf{a_1}) \cdot (\mathbf{b_1} \times \mathbf{b_2})|}{|\mathbf{b_1} \times \mathbf{b_2}|}
\]
Substituting the values we have:
\[
d = \frac{|(-6, -15, 3) \cdot (-6, -15, 3)|}{\sqrt{270}}
\]
Calculating the dot product:
\[
(-6)(-6) + (-15)(-15) + (3)(3) = 36 + 225 + 9 = 270
\]
Thus,
\[
d = \frac{270}{\sqrt{270}} = \sqrt{270}
\]
### Step 6: Relate to given condition
We know from the problem statement that:
\[
d = \lambda \sqrt{30}
\]
Setting these equal gives:
\[
\sqrt{270} = \lambda \sqrt{30}
\]
### Step 7: Solve for \( \lambda \)
Squaring both sides:
\[
270 = \lambda^2 \cdot 30
\]
Thus,
\[
\lambda^2 = \frac{270}{30} = 9 \implies \lambda = 3
\]
### Final Answer
The value of \( \lambda \) is \( \boxed{3} \).