Home
Class 12
MATHS
If cosalpha, cosbeta and cosgamma are th...

If `cosalpha, cosbeta and cosgamma` are the direction cosine of a line, then find the value of `cos^2alpha+(cosbeta+singamma)(cosbeta-singamma)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \cos^2 \alpha + (\cos \beta + \sin \gamma)(\cos \beta - \sin \gamma) \). ### Step-by-Step Solution: 1. **Understand the Direction Cosines**: The direction cosines of a line are given as \( \cos \alpha, \cos \beta, \cos \gamma \). By definition, the sum of the squares of the direction cosines equals 1: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] 2. **Simplify the Expression**: We can rewrite the expression \( \cos^2 \alpha + (\cos \beta + \sin \gamma)(\cos \beta - \sin \gamma) \) using the difference of squares: \[ (\cos \beta + \sin \gamma)(\cos \beta - \sin \gamma) = \cos^2 \beta - \sin^2 \gamma \] Therefore, the expression becomes: \[ \cos^2 \alpha + \cos^2 \beta - \sin^2 \gamma \] 3. **Substituting for \( \sin^2 \gamma \)**: We know from the Pythagorean identity that: \[ \sin^2 \gamma = 1 - \cos^2 \gamma \] Substituting this into our expression gives: \[ \cos^2 \alpha + \cos^2 \beta - (1 - \cos^2 \gamma) \] Simplifying this, we get: \[ \cos^2 \alpha + \cos^2 \beta - 1 + \cos^2 \gamma \] 4. **Rearranging the Expression**: Now, we can rearrange the terms: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma - 1 \] 5. **Using the Property of Direction Cosines**: From the property of direction cosines, we have: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] Substituting this into our expression gives: \[ 1 - 1 = 0 \] 6. **Final Result**: Therefore, the value of the expression \( \cos^2 \alpha + (\cos \beta + \sin \gamma)(\cos \beta - \sin \gamma) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|10 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|15 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Matching Type Questions|4 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If cosalpha,cosbeta,a n dcosgamma are the direction cosines of any line segment, then cos^2alpha+cos^2beta+cos^2gamma=1. Statement 2: If cosalpha,cosbeta,a n dcosgamma are the direction cosines of any line segment, then cos2alpha+cos2beta+cos2gamma=1.

If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alpha))

If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alpha))

STATEMENT-1 : The angle between the lines whose direction ratios are (1, 2, 3) and (-12, 3, 2) is 90^(@) STAEMENT-2 : The direction cosines of a line whose direction ratios are (3, 4, 12) are (3/13, 4/13, 12/13) . STATEMENT-3 : If cosalpha, cosbeta,cosgamma are the direction cosines of a line then sin^(2)alpha + sin^(2)beta +sin^(2)gamma = 2.

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

If cosalpha+cosbeta+cosgamma=0 a n d a l so sinalpha+sinbeta+singamma=0, then prove that cos2alpha+cos2beta+cos2gamma =sin2alpha+sin2beta+sin2gamma=0 sin3alpha+sin3beta+sin3gamma=3sin(alpha+beta+gamma) cos3alpha+cos3beta+cos3gamma=3cos(alpha+beta+gamma)

If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 , then the value of sin3alpha+8sin3beta+27sin3gamma is sin(a+b+gamma) b. 3sin(alpha+beta+gamma) c. 18"sin"(alpha+beta+gamma) d. sin(alpha+2beta+3)

vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammadot Assuming the y-z plane as a mirror, the directin cosines of the reflected image of vec A in the plane are a. cosalpha,cosbeta,cosgamma b. cosalpha,-cosbeta,cosgamma c. -cosalpha,cosbeta,cosgamma d. -cosalpha,-cosbeta,-cosgamma

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If the points a(cosalpha+hatisingamma),b(cosbeta+hatisinbeta) and c(cosgamma+hati sin gamma) are collinear, then the value of |z| is _____ where z=bc sin(beta-gamma)+ca sin(gamma-alpha)+ab sin(alpha+beta)+3hati