Home
Class 12
MATHS
Find the angle between the pairs of line...

Find the angle between the pairs of line `r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) and hat(r)=5hat(i)-2hat(j)+mu(3hat(i)+2hat(j)+6hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the given lines, we will follow these steps: ### Step 1: Identify the direction ratios of the lines The equations of the lines are given as: 1. \( \mathbf{r} = 3\hat{i} + 2\hat{j} - 4\hat{k} + \lambda(\hat{i} + 2\hat{j} + 2\hat{k}) \) 2. \( \mathbf{r} = 5\hat{i} - 2\hat{j} + \mu(3\hat{i} + 2\hat{j} + 6\hat{k}) \) From these equations, we can extract the direction ratios: - For the first line, the direction ratios are \( \mathbf{a} = \hat{i} + 2\hat{j} + 2\hat{k} \) which gives us \( (1, 2, 2) \). - For the second line, the direction ratios are \( \mathbf{b} = 3\hat{i} + 2\hat{j} + 6\hat{k} \) which gives us \( (3, 2, 6) \). ### Step 2: Calculate the dot product of the direction ratios The dot product \( \mathbf{a} \cdot \mathbf{b} \) is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (1)(3) + (2)(2) + (2)(6) = 3 + 4 + 12 = 19 \] ### Step 3: Calculate the magnitudes of the direction ratios Now we calculate the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \): - Magnitude of \( \mathbf{a} \): \[ |\mathbf{a}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] - Magnitude of \( \mathbf{b} \): \[ |\mathbf{b}| = \sqrt{3^2 + 2^2 + 6^2} = \sqrt{9 + 4 + 36} = \sqrt{49} = 7 \] ### Step 4: Use the dot product to find the cosine of the angle Using the formula for the cosine of the angle \( \theta \) between two vectors: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] Substituting the values we calculated: \[ \cos \theta = \frac{19}{3 \times 7} = \frac{19}{21} \] ### Step 5: Calculate the angle \( \theta \) Finally, we find the angle \( \theta \) by taking the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{19}{21}\right) \] This gives us the angle between the two lines. ### Summary of the Solution: The angle between the given lines is \( \theta = \cos^{-1}\left(\frac{19}{21}\right) \). ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|15 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the pair of lines r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) r=5hat(i)-4hat(k)+mu(3hat(i)+2hat(j)+6hat(k))

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by r=(3hat(i)+8hat(j)+3hat(k))+lambda(3hat(i)-hat(j)+hat(k)) and r=(-3hat(i)-7hat(j)+6hat(k))+mu(-3hat(i)+2hat(j)+4hat(k)) .

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

Find the angle between the following pairs of lines: -> r=(3 hat i+2 hat j-4 hat k)+lambda( hat i+2 hat j+2 hat k)a n d\ -> r=(5 hat i-2 hat k)+mu(3 hat i+2 hat j+6 hat k)dot

Find the angle between the lines vec r=3 hat i+2 hat j-4 hat k+lambda( hat i+2 hat j+2 hat k) a n d vec r=(5 hat j-2 hat k)+mu(3 hat i+2 hat j+6 hat k)dot

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .