Home
Class 12
MATHS
Find the magnitude of the shortest dista...

Find the magnitude of the shortest distance between the lines `(x)/(2)=(y)/(-3)=(z)/(1) and (x-2)/(3)=(y-1)/(-5)=(z+2)/(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the shortest distance between the two lines given by the equations \[ \frac{x}{2} = \frac{y}{-3} = \frac{z}{1} \] and \[ \frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}, \] we can follow these steps: ### Step 1: Write the equations of the lines in vector form The first line can be expressed as: \[ \mathbf{L_1}: \mathbf{r} = \mathbf{a_1} + \lambda \mathbf{b_1} \] where \(\mathbf{a_1} = 0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}\) and \(\mathbf{b_1} = 2\mathbf{i} - 3\mathbf{j} + 1\mathbf{k}\). The second line can be expressed as: \[ \mathbf{L_2}: \mathbf{r} = \mathbf{a_2} + \mu \mathbf{b_2} \] where \(\mathbf{a_2} = 2\mathbf{i} + 1\mathbf{j} - 2\mathbf{k}\) and \(\mathbf{b_2} = 3\mathbf{i} - 5\mathbf{j} + 2\mathbf{k}\). ### Step 2: Find the cross product of the direction vectors We need to calculate \(\mathbf{b_1} \times \mathbf{b_2}\): \[ \mathbf{b_1} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix} \] Using the determinant to find the cross product: \[ \mathbf{b_1} \times \mathbf{b_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 1 \\ 3 & -5 & 2 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i}((-3)(2) - (1)(-5)) - \mathbf{j}((2)(2) - (1)(3)) + \mathbf{k}((2)(-5) - (-3)(3)) \] \[ = \mathbf{i}(-6 + 5) - \mathbf{j}(4 - 3) + \mathbf{k}(-10 + 9) \] \[ = -\mathbf{i} - \mathbf{j} - \mathbf{k} \] Thus, \[ \mathbf{b_1} \times \mathbf{b_2} = -\mathbf{i} - \mathbf{j} - \mathbf{k} \] ### Step 3: Find the magnitude of the cross product The magnitude of \(\mathbf{b_1} \times \mathbf{b_2}\) is: \[ |\mathbf{b_1} \times \mathbf{b_2}| = \sqrt{(-1)^2 + (-1)^2 + (-1)^2} = \sqrt{3} \] ### Step 4: Find the vector \( \mathbf{a_2} - \mathbf{a_1} \) Now, we find \(\mathbf{a_2} - \mathbf{a_1}\): \[ \mathbf{a_2} - \mathbf{a_1} = (2\mathbf{i} + 1\mathbf{j} - 2\mathbf{k}) - (0\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}) = 2\mathbf{i} + 1\mathbf{j} - 2\mathbf{k} \] ### Step 5: Calculate the dot product Now, we compute the dot product: \[ (\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1}) = (-\mathbf{i} - \mathbf{j} - \mathbf{k}) \cdot (2\mathbf{i} + 1\mathbf{j} - 2\mathbf{k}) \] Calculating this: \[ = -1 \cdot 2 - 1 \cdot 1 - 1 \cdot (-2) = -2 - 1 + 2 = -1 \] ### Step 6: Use the formula for the shortest distance The formula for the shortest distance \(d\) between the two lines is given by: \[ d = \frac{|(\mathbf{b_1} \times \mathbf{b_2}) \cdot (\mathbf{a_2} - \mathbf{a_1})|}{|\mathbf{b_1} \times \mathbf{b_2}|} \] Substituting the values we found: \[ d = \frac{|-1|}{\sqrt{3}} = \frac{1}{\sqrt{3}} \] ### Final Answer Thus, the magnitude of the shortest distance between the given two lines is \[ \frac{1}{\sqrt{3}} \text{ units.} \] ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|15 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines (x)/2=(y-2)/3=(z-4)/3 and (x-1)/3=(y-2)/7=(z-3)/8

Find the shortest distance between the lines (x)/(5)= (y-2)/(2) =(3-z)/(-3) and (x+3)/(5)=(1-y)/(-2)=(z+4)/(3)

Find the length of the shortest distance between the lines (x-1)/2=(y-4)/3=(z+1)/(-3) and (x-4)/1=(y-3)/3=(z-2)/2

Find the shortest distance between the lines (x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1

Find the shortest distance between the lines (x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1

Find the shortest distance between the lines (x+3)/(-4) =(y-6)/(3)=(z)/(2) " and " (x+2)/(-4) =(y)/(1)=(z-7)/(1)

The shortest distance between the lines (x-1)/2= (y-1)/3=(z+2)/6and (x-2)/4=(y+1)/1=(z-3)/7

Find the shortest distance between the lines (x-23)/(-6) = (y-19)/(-4) = (z-25)/(3) and (x-12)/(-9) = (y-1)/(4)= (z-5)/(2).

Find the shortest distance between the lines (x-1)/2=(y-2)/3=(z-3)/4a n d(x-2)/3=(y-4)/4=(z-5)/5 .

Find the shortest distance between the lines (x-1)/2=(y-2)/3=(z-3)/4a n d(x-2)/3=(y-4)/4=(z-5)/5 .