Home
Class 12
MATHS
A sphere has the equation |r-a|^2+|r-b|^...

A sphere has the equation `|r-a|^2+|r-b|^2=72, where a=hat(i)+3hat(j)-6hat(k) and b=2hat(i)+4hat(j)+2hat(k)`
Find
(i) The centre of sphere
(ii) The radius of sphere
(iii) Perpendicular distance from the centre of the sphere to the plane `rcdot(2hat(i)+2hat(j)-hat(k))+3=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Identify the given vectors and the equation of the sphere We are given: - \( a = \hat{i} + 3\hat{j} - 6\hat{k} \) - \( b = 2\hat{i} + 4\hat{j} + 2\hat{k} \) - The equation of the sphere is \( |r - a|^2 + |r - b|^2 = 72 \). ### Step 2: Rewrite the equation of the sphere The equation \( |r - a|^2 + |r - b|^2 = 72 \) can be expanded as follows: Let \( r = x\hat{i} + y\hat{j} + z\hat{k} \). Then, \[ |r - a|^2 = |(x - 1)\hat{i} + (y - 3)\hat{j} + (z + 6)\hat{k}|^2 = (x - 1)^2 + (y - 3)^2 + (z + 6)^2 \] \[ |r - b|^2 = |(x - 2)\hat{i} + (y - 4)\hat{j} + (z - 2)\hat{k}|^2 = (x - 2)^2 + (y - 4)^2 + (z - 2)^2 \] Thus, the equation becomes: \[ (x - 1)^2 + (y - 3)^2 + (z + 6)^2 + (x - 2)^2 + (y - 4)^2 + (z - 2)^2 = 72 \] ### Step 3: Expand and simplify the equation Expanding both squared terms: \[ (x - 1)^2 = x^2 - 2x + 1 \] \[ (y - 3)^2 = y^2 - 6y + 9 \] \[ (z + 6)^2 = z^2 + 12z + 36 \] \[ (x - 2)^2 = x^2 - 4x + 4 \] \[ (y - 4)^2 = y^2 - 8y + 16 \] \[ (z - 2)^2 = z^2 - 4z + 4 \] Combining these gives: \[ 2x^2 - 6x + 5 + 2y^2 - 14y + 25 + 2z^2 + 8z + 40 = 72 \] ### Step 4: Combine like terms Combining like terms: \[ 2x^2 + 2y^2 + 2z^2 - 6x - 14y + 8z + 70 = 72 \] This simplifies to: \[ 2x^2 + 2y^2 + 2z^2 - 6x - 14y + 8z - 2 = 0 \] ### Step 5: Rearranging to standard form Dividing the entire equation by 2: \[ x^2 + y^2 + z^2 - 3x - 7y + 4z - 1 = 0 \] ### Step 6: Complete the square Completing the square for each variable: - For \( x \): \( x^2 - 3x \) becomes \( (x - \frac{3}{2})^2 - \frac{9}{4} \) - For \( y \): \( y^2 - 7y \) becomes \( (y - \frac{7}{2})^2 - \frac{49}{4} \) - For \( z \): \( z^2 + 4z \) becomes \( (z + 2)^2 - 4 \) Substituting back: \[ (x - \frac{3}{2})^2 + (y - \frac{7}{2})^2 + (z + 2)^2 - \frac{9}{4} - \frac{49}{4} - 4 - 1 = 0 \] This simplifies to: \[ (x - \frac{3}{2})^2 + (y - \frac{7}{2})^2 + (z + 2)^2 = 72 + \frac{9 + 49 + 16 + 4}{4} \] Calculating the right side gives: \[ = 72 + \frac{78}{4} = 72 + 19.5 = 91.5 \] ### Step 7: Identify the center and radius From the equation: - The center \( C \) of the sphere is \( \left( \frac{3}{2}, \frac{7}{2}, -2 \right) \) - The radius \( r \) is \( \sqrt{91.5} \) ### Step 8: Calculate the perpendicular distance from the center to the plane The plane equation is given by: \[ 2x + 2y - z + 3 = 0 \] The perpendicular distance \( D \) from a point \( (x_0, y_0, z_0) \) to the plane \( Ax + By + Cz + D = 0 \) is given by: \[ D = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}} \] Substituting \( A = 2, B = 2, C = -1, D = 3 \) and \( (x_0, y_0, z_0) = \left( \frac{3}{2}, \frac{7}{2}, -2 \right) \): \[ D = \frac{|2(\frac{3}{2}) + 2(\frac{7}{2}) - (-2) + 3|}{\sqrt{2^2 + 2^2 + (-1)^2}} \] Calculating the numerator: \[ = \frac{|3 + 7 + 2 + 3|}{\sqrt{4 + 4 + 1}} = \frac{15}{3} = 5 \] ### Final Answers (i) The center of the sphere is \( \left( \frac{3}{2}, \frac{7}{2}, -2 \right) \) (ii) The radius of the sphere is \( \sqrt{91.5} \) (iii) The perpendicular distance from the center of the sphere to the plane is \( 5 \).
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|96 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|28 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|15 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular the plane rcdot(2hat(i)+hat(j)+2hat(k))=5 .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

The vector equation of the plane through the point 2hat(i)-hat(j)-4hat(k) and parallel to the plane rcdot(4hat(i)-12hat(j)-3hat(k))-7=0 is

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .