Home
Class 12
MATHS
Consider the following 3lines in space ...

Consider the following 3lines in space
`L_1:r=3hat(i)-hat(j)+hat(k)+lambda(2hat(i)+4hat(j)-hat(k))`
`L_2: r=hat(i)+hat(j)-3hat(k)+mu(4hat(i)+2hat(j)+4hat(k))`
`L_3:=3hat(i)+2hat(j)-2hat(k)+t(2hat(i)+hat(j)+2hat(k))`
Then, which one of the following part(s) is/ are in the same plane?

A

Only `L_1L_2`

B

Only `L_2L_3`

C

Only `L_1L_3`

D

`L_1L_2 and L_2L_3`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which lines among \( L_1 \), \( L_2 \), and \( L_3 \) lie in the same plane, we can use the concept of the scalar triple product. The lines will be coplanar if the determinant formed by their direction vectors and the vector connecting points on the lines is zero. ### Step 1: Identify the lines and their components The lines are given as: - \( L_1: \mathbf{r} = (3\hat{i} - \hat{j} + \hat{k}) + \lambda(2\hat{i} + 4\hat{j} - \hat{k}) \) - \( L_2: \mathbf{r} = (\hat{i} + \hat{j} - 3\hat{k}) + \mu(4\hat{i} + 2\hat{j} + 4\hat{k}) \) - \( L_3: \mathbf{r} = (3\hat{i} + 2\hat{j} - 2\hat{k}) + t(2\hat{i} + \hat{j} + 2\hat{k}) \) From these equations, we can extract: - For \( L_1 \): - Point \( A = (3, -1, 1) \) - Direction vector \( \mathbf{b} = (2, 4, -1) \) - For \( L_2 \): - Point \( C = (1, 1, -3) \) - Direction vector \( \mathbf{d} = (4, 2, 4) \) - For \( L_3 \): - Point \( B = (3, 2, -2) \) - Direction vector \( \mathbf{e} = (2, 1, 2) \) ### Step 2: Check coplanarity of \( L_1 \) and \( L_2 \) To check if \( L_1 \) and \( L_2 \) are in the same plane, we need to calculate the determinant of the matrix formed by the direction vectors and the vector connecting points \( C \) and \( A \). 1. Calculate \( \mathbf{c} - \mathbf{a} \): \[ \mathbf{c} - \mathbf{a} = (1 - 3, 1 - (-1), -3 - 1) = (-2, 2, -4) \] 2. Form the determinant: \[ \text{Det} = \begin{vmatrix} 2 & 4 & -1 \\ 4 & 2 & 4 \\ -2 & 2 & -4 \end{vmatrix} \] 3. Calculate the determinant: \[ = 2 \begin{vmatrix} 2 & 4 \\ 2 & -4 \end{vmatrix} - 4 \begin{vmatrix} 4 & 4 \\ -2 & -4 \end{vmatrix} - 1 \begin{vmatrix} 4 & 2 \\ -2 & 2 \end{vmatrix} \] \[ = 2(2 \cdot -4 - 4 \cdot 2) - 4(4 \cdot -4 - 4 \cdot -2) - (4 \cdot 2 - 2 \cdot -2) \] \[ = 2(-8 - 8) - 4(-16 + 8) - (8 + 4) \] \[ = 2(-16) - 4(-8) - 12 \] \[ = -32 + 32 - 12 = -12 \neq 0 \] Thus, \( L_1 \) and \( L_2 \) are **not** in the same plane. ### Step 3: Check coplanarity of \( L_1 \) and \( L_3 \) 1. Calculate \( \mathbf{b} - \mathbf{a} \): \[ \mathbf{b} - \mathbf{a} = (3 - 3, 2 - (-1), -2 - 1) = (0, 3, -3) \] 2. Form the determinant: \[ \text{Det} = \begin{vmatrix} 2 & 4 & -1 \\ 2 & 1 & 2 \\ 0 & 3 & -3 \end{vmatrix} \] 3. Calculate the determinant: \[ = 2 \begin{vmatrix} 1 & 2 \\ 3 & -3 \end{vmatrix} - 4 \begin{vmatrix} 2 & 2 \\ 0 & -3 \end{vmatrix} - 1 \begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} \] \[ = 2(-3 - 6) - 4(-6) - (6) \] \[ = 2(-9) + 24 - 6 \] \[ = -18 + 24 - 6 = 0 \] Thus, \( L_1 \) and \( L_3 \) are in the same plane. ### Step 4: Check coplanarity of \( L_2 \) and \( L_3 \) 1. Calculate \( \mathbf{c} - \mathbf{b} \): \[ \mathbf{c} - \mathbf{b} = (1 - 3, 1 - 2, -3 - (-2)) = (-2, -1, -1) \] 2. Form the determinant: \[ \text{Det} = \begin{vmatrix} 4 & 2 & 4 \\ 2 & 1 & 2 \\ -2 & -1 & -1 \end{vmatrix} \] 3. Calculate the determinant: \[ = 4 \begin{vmatrix} 1 & 2 \\ -1 & -1 \end{vmatrix} - 2 \begin{vmatrix} 2 & 4 \\ -2 & -1 \end{vmatrix} + 4 \begin{vmatrix} 2 & 1 \\ -2 & -1 \end{vmatrix} \] \[ = 4(-1 + 2) - 2(-2 - 8) + 4(-2 + 2) \] \[ = 4(1) + 2(10) + 0 \] \[ = 4 + 20 = 24 \neq 0 \] Thus, \( L_2 \) and \( L_3 \) are **not** in the same plane. ### Conclusion The only lines that are in the same plane are \( L_1 \) and \( L_3 \).
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|28 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the pairs of line r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) and hat(r)=5hat(i)-2hat(j)+mu(3hat(i)+2hat(j)+6hat(k)) .

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

ARIHANT MATHS ENGLISH-THREE DIMENSIONAL COORDINATE SYSTEM-Exercise (Single Option Correct Type Questions)
  1. Two system of rectangular axes have the same origin. If a plane cuts t...

    Text Solution

    |

  2. The line (x+6)/5=(y+10)/3=(z+14)/8 is the hypotenuse of an isosceles ...

    Text Solution

    |

  3. Consider the following 3lines in space L1:r=3hat(i)-hat(j)+hat(k)+la...

    Text Solution

    |

  4. Let r=a+lambdal and r=b+mum br be two lines in space, where a= 5hat(i)...

    Text Solution

    |

  5. L1a n dL2 and two lines whose vector equations are L1: vec r=lambda((c...

    Text Solution

    |

  6. The vector equations of two lines L1 and L2 are respectively vec r=1...

    Text Solution

    |

  7. Consider three vectors p=i+j+k, q=2i+4j-k and r=i+j+3k. If p, q and r ...

    Text Solution

    |

  8. Intercept made by the circle zbarz+bara+a barz+r=0 on the real axis ...

    Text Solution

    |

  9. If the distance between the planes 8x+12y-14z=2 and 4x+6y-7z=2 can be ...

    Text Solution

    |

  10. A plane passes through thee points P(4, 0, 0) and Q(0, 0, 4) and is pa...

    Text Solution

    |

  11. If from the point P(f, g, h) perpendicular PL and PM be drawn to yz an...

    Text Solution

    |

  12. The plane XOZ divides the join of (1, -1, 5) and (2, 3, 4)in the ratio...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  15. Equations of the line which passe through the point with position vect...

    Text Solution

    |

  16. Which of the following planes are parallel but not identical? P1: 4x...

    Text Solution

    |

  17. A parallelopiped is formed by planes drawn through the points (1, 2, 3...

    Text Solution

    |

  18. Vector equation of the plane r = hati-hatj+ lamda(hati +hatj+hatk)+mu(...

    Text Solution

    |

  19. The vector equations of two lines L1 and L2 are respectively, L1:r=2i+...

    Text Solution

    |

  20. Consider the plane (x,y,z)= (0,1,1) + lamda(1,-1,1)+mu(2,-1,0) The dis...

    Text Solution

    |