Home
Class 12
MATHS
The vector equations of two lines L1 an...

The vector equations of two lines `L_1 and L_2` are respectively `vec r=17hat i–9hat j+9hat k+ lambda(3hat i +hat j+ 5hat k) and vec r=15hat –8hat j-hat k+mu(4hat i+3hat j)` `I` `L_1 and L_2` are skew lines `II` `(11, -11, -1)` is the point of intersection of `L_1 and L_2` `III` `(-11, 11, 1)` is the point of intersection of `L_1 and L_2`. `IV ` `cos^-1 (3/sqrt35)` is the acute angle between `_1 and L_2` then , Which of the following is true?

A

II and IV

B

I and IV

C

Only IV

D

III and IV

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vector equations of the two lines \( L_1 \) and \( L_2 \) and evaluate the given statements. ### Step 1: Write down the vector equations The vector equations of the lines are given as: - \( L_1: \vec{r} = 17\hat{i} - 9\hat{j} + 9\hat{k} + \lambda(3\hat{i} + \hat{j} + 5\hat{k}) \) - \( L_2: \vec{r} = 15\hat{i} - 8\hat{j} - \hat{k} + \mu(4\hat{i} + 3\hat{j}) \) ### Step 2: Identify direction vectors and points From the equations: - For \( L_1 \), the direction vector \( \vec{d_1} = 3\hat{i} + \hat{j} + 5\hat{k} \) and a point on the line is \( P_1(17, -9, 9) \). - For \( L_2 \), the direction vector \( \vec{d_2} = 4\hat{i} + 3\hat{j} \) and a point on the line is \( P_2(15, -8, -1) \). ### Step 3: Check if the lines are skew To determine if the lines are skew, we need to check if they are parallel and if they intersect. 1. **Check for parallelism**: - The lines are parallel if \( \vec{d_1} \) is a scalar multiple of \( \vec{d_2} \). - \( \vec{d_1} = (3, 1, 5) \) and \( \vec{d_2} = (4, 3, 0) \). - The ratios \( \frac{3}{4}, \frac{1}{3}, \frac{5}{0} \) are not equal, hence the lines are not parallel. 2. **Check for intersection**: - Set the equations equal to each other: \[ 17 + 3\lambda = 15 + 4\mu \quad (1) \] \[ -9 + \lambda = -8 + 3\mu \quad (2) \] \[ 9 + 5\lambda = -1 \quad (3) \] - From equation (3), \( 5\lambda = -10 \Rightarrow \lambda = -2 \). - Substitute \( \lambda = -2 \) in equation (1): \[ 17 + 3(-2) = 15 + 4\mu \Rightarrow 11 = 15 + 4\mu \Rightarrow 4\mu = -4 \Rightarrow \mu = -1. \] - Substitute \( \lambda = -2 \) in equation (2): \[ -9 + (-2) = -8 + 3(-1) \Rightarrow -11 = -11. \] - Since both equations are satisfied, the lines intersect at the point \( (11, -11, -1) \). ### Step 4: Evaluate the statements 1. **Statement I**: \( L_1 \) and \( L_2 \) are skew lines. **False** (they intersect). 2. **Statement II**: \( (11, -11, -1) \) is the point of intersection of \( L_1 \) and \( L_2 \). **True**. 3. **Statement III**: \( (-11, 11, 1) \) is the point of intersection of \( L_1 \) and \( L_2 \). **False** (not the intersection point). 4. **Statement IV**: \( \cos^{-1} \left( \frac{3}{\sqrt{35}} \right) \) is the acute angle between \( L_1 \) and \( L_2 \). **True** (we will verify this). ### Step 5: Calculate the angle between the lines To find the angle \( \theta \) between the lines: - Use the formula: \[ \cos \theta = \frac{\vec{d_1} \cdot \vec{d_2}}{|\vec{d_1}| |\vec{d_2}|} \] - Calculate \( \vec{d_1} \cdot \vec{d_2} \): \[ \vec{d_1} \cdot \vec{d_2} = 3 \cdot 4 + 1 \cdot 3 + 5 \cdot 0 = 12 + 3 + 0 = 15. \] - Calculate magnitudes: \[ |\vec{d_1}| = \sqrt{3^2 + 1^2 + 5^2} = \sqrt{9 + 1 + 25} = \sqrt{35}, \] \[ |\vec{d_2}| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5. \] - Substitute into the cosine formula: \[ \cos \theta = \frac{15}{\sqrt{35} \cdot 5} = \frac{3}{\sqrt{35}}. \] - Therefore, \( \theta = \cos^{-1} \left( \frac{3}{\sqrt{35}} \right) \). ### Conclusion The true statements are: - Statement II and Statement IV are true.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|28 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the distance between the lines l_1 and l_2 given by vec r= hat i+2 hat j-4k+lambda(2 hat i+3 hat j+6 hat k) and vec r=3 hat i+3 hat j-5k+mu(2 hat i+3 hat j+6 hat k) .

Find the distance between the lines l_1a n d\ l_2 given by vec r= hat i+2 hat j-4 hat k+lambda(2 hat i+3 hat j+6 hat k)a n d\ ,\ vec r=3 hat i+3 hat j-5 hat k+mu(2 hat i+3 hat j+6 hat k)dot

Find the shortest distance between the lines -> r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and -> r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between lines -> r=6 hat i+2 hat j+ hat k+lambda( hat i-2 hat j+2 hat k) and -> r=-4 hat i- hat k+mu(3 hat i-2 hat j-2 hat k) .

Find the angle between the line vec r = (2 hat i-hat j +3 hat k)+ lambda (3 hat i-hat j+2 hat k ) and the plane vec r.(hat i + hat j + hat k)=3

The distance between the line vec r=(2 hat i-2 hat j+3 hat k)+lambda( hat i- hat j+4 hat k) and plane vec rdot( hat i+5 hat j+ hat k)=5.

Determine whether the following pair of lines intersect or not. vec r= hat i+ hat j- hat k+lambda(3 hat i- hat j); vec r=4 hat i- hat k+mu(2 hat i+3 hat k)

Determine the shortest distance between the pair of lines : vec r=( hat i+ hat j- hat k)+lambda(3 hat i- hat j)a n d\ vec r=(2 hat i- hat k)+mu(2 hat i+2 hat k)dot

ARIHANT MATHS ENGLISH-THREE DIMENSIONAL COORDINATE SYSTEM-Exercise (Single Option Correct Type Questions)
  1. Let r=a+lambdal and r=b+mum br be two lines in space, where a= 5hat(i)...

    Text Solution

    |

  2. L1a n dL2 and two lines whose vector equations are L1: vec r=lambda((c...

    Text Solution

    |

  3. The vector equations of two lines L1 and L2 are respectively vec r=1...

    Text Solution

    |

  4. Consider three vectors p=i+j+k, q=2i+4j-k and r=i+j+3k. If p, q and r ...

    Text Solution

    |

  5. Intercept made by the circle zbarz+bara+a barz+r=0 on the real axis ...

    Text Solution

    |

  6. If the distance between the planes 8x+12y-14z=2 and 4x+6y-7z=2 can be ...

    Text Solution

    |

  7. A plane passes through thee points P(4, 0, 0) and Q(0, 0, 4) and is pa...

    Text Solution

    |

  8. If from the point P(f, g, h) perpendicular PL and PM be drawn to yz an...

    Text Solution

    |

  9. The plane XOZ divides the join of (1, -1, 5) and (2, 3, 4)in the ratio...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let A B C D be a tetrahedron such that the edges A B ,A Ca n dA D ar...

    Text Solution

    |

  12. Equations of the line which passe through the point with position vect...

    Text Solution

    |

  13. Which of the following planes are parallel but not identical? P1: 4x...

    Text Solution

    |

  14. A parallelopiped is formed by planes drawn through the points (1, 2, 3...

    Text Solution

    |

  15. Vector equation of the plane r = hati-hatj+ lamda(hati +hatj+hatk)+mu(...

    Text Solution

    |

  16. The vector equations of two lines L1 and L2 are respectively, L1:r=2i+...

    Text Solution

    |

  17. Consider the plane (x,y,z)= (0,1,1) + lamda(1,-1,1)+mu(2,-1,0) The dis...

    Text Solution

    |

  18. The value of a for which the lines (x-2)/(1)=(y-9)/(2)=(z-13)/(3) and ...

    Text Solution

    |

  19. For the line (x-1)/1=(y-2)/2=(z-3)/3, which one of the following is...

    Text Solution

    |

  20. Given planes P1:cy+bz=x P2:az+cx=y P3:bx+ay=z P1, P2 and P3 pass...

    Text Solution

    |