Home
Class 12
MATHS
A, B, C and D are four points in space. ...

A, B, C and D are four points in space. Using vector methods, prove that `AC^(2)+BD^(2)+AC^(2)+BC^(2)geAB^(2)+CD^(2)` what is the implication of the sign of equality.

A

`AB^2+CD^2`

B

`(1)/(AB^2)-(1)/(CD^2)`

C

`(1)/(CD^2)-(1)/(AB^2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To prove the inequality \( AC^2 + BD^2 + AC^2 + BC^2 \geq AB^2 + CD^2 \) using vector methods, we can follow these steps: ### Step 1: Define Position Vectors Let the position vectors of points A, B, C, and D be represented as: - \( \vec{a} \) for point A - \( \vec{b} \) for point B - \( \vec{c} \) for point C - \( \vec{d} \) for point D ### Step 2: Express Squared Distances We can express the squared distances in terms of the position vectors: - \( AC^2 = |\vec{c} - \vec{a}|^2 = (\vec{c} - \vec{a}) \cdot (\vec{c} - \vec{a}) = |\vec{c}|^2 - 2\vec{a} \cdot \vec{c} + |\vec{a}|^2 \) - \( BD^2 = |\vec{d} - \vec{b}|^2 = (\vec{d} - \vec{b}) \cdot (\vec{d} - \vec{b}) = |\vec{d}|^2 - 2\vec{b} \cdot \vec{d} + |\vec{b}|^2 \) - \( BC^2 = |\vec{c} - \vec{b}|^2 = |\vec{c}|^2 - 2\vec{b} \cdot \vec{c} + |\vec{b}|^2 \) - \( AB^2 = |\vec{b} - \vec{a}|^2 = |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{a}|^2 \) - \( CD^2 = |\vec{d} - \vec{c}|^2 = |\vec{d}|^2 - 2\vec{c} \cdot \vec{d} + |\vec{c}|^2 \) ### Step 3: Substitute and Rearrange Now, substitute these expressions into the inequality: \[ AC^2 + BD^2 + AC^2 + BC^2 \geq AB^2 + CD^2 \] This becomes: \[ \left( |\vec{c}|^2 - 2\vec{a} \cdot \vec{c} + |\vec{a}|^2 \right) + \left( |\vec{d}|^2 - 2\vec{b} \cdot \vec{d} + |\vec{b}|^2 \right) + \left( |\vec{c}|^2 - 2\vec{b} \cdot \vec{c} + |\vec{b}|^2 \right) \geq \left( |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{a}|^2 \right) + \left( |\vec{d}|^2 - 2\vec{c} \cdot \vec{d} + |\vec{c}|^2 \right) \] ### Step 4: Combine Like Terms Combine all the terms on both sides: - Left-hand side (LHS): \[ 2|\vec{c}|^2 + 2|\vec{b}|^2 + |\vec{d}|^2 - 2\vec{a} \cdot \vec{c} - 2\vec{b} \cdot \vec{d} - 2\vec{b} \cdot \vec{c} \] - Right-hand side (RHS): \[ |\vec{b}|^2 + |\vec{a}|^2 + |\vec{d}|^2 + |\vec{c}|^2 - 2\vec{a} \cdot \vec{b} - 2\vec{c} \cdot \vec{d} \] ### Step 5: Rearranging the Inequality Now rearranging gives: \[ |\vec{c}|^2 + |\vec{b}|^2 - 2\vec{b} \cdot \vec{c} - 2\vec{a} \cdot \vec{c} + 2\vec{a} \cdot \vec{b} + 2\vec{c} \cdot \vec{d} \geq 0 \] ### Step 6: Recognizing the Square This expression can be recognized as a squared term: \[ |\vec{a} + \vec{b} - \vec{c} - \vec{d}|^2 \geq 0 \] This is always true since the square of a vector's magnitude is always non-negative. ### Step 7: Implication of Equality The equality holds when: \[ \vec{a} + \vec{b} = \vec{c} + \vec{d} \] This implies that the points A, B, C, and D are coplanar and lie on a straight line.
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|28 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|7 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

In a rhombus ABCD, prove that AC^(2) + BD^(2) = 4AB^(2)

In a rectangle ABCD, prove that : AC^(2)+BD^(2)=AB^(2)+BC^(2)+CD^(2)+DA^(2) .

In triangleABC , angleA= 60^(@) prove that BC^(2)= AB^(2)+AC^(2)- AB . AC

Using vector method prove that in any triangle ABC a^2=b^2+c^2-2bc cos A .

In any triangle ABC, prove that AB^2 + AC^2 = 2(AD^2 + BD^2) , where D is the midpoint of BC.

ABC is a triangle, right angled at B, M is a point on BC. Prove that : AM^(2) + BC^(2) = AC^(2) + BM^(2)

In a quadrilateral ABCD, angleA+angleD=90^(@) . Prove that AC^(2)+BD^(2)=AD^(2)+BC^(2)

If A D is the median of A B C , using vectors, prove that A B^2+A C^2=2(A D^2+C D^2)dot

In a quadrilateral ABCD angle B = angle D = 90 ^(@) Prove that : 2AC^(2) - BC^(2) = AB^(2) + AD^(2) +DC^(2)

In Figure 2, AD _|_ BC . Prove that AB^2 + CD^2 = BD^2 + AC^2 .

ARIHANT MATHS ENGLISH-THREE DIMENSIONAL COORDINATE SYSTEM-Exercise (Single Option Correct Type Questions)
  1. Find 3-dimensional vectors vec v1,vec v2,vec v3 satisfying vec v1* ve...

    Text Solution

    |

  2. The points hat(i)-hat(j)+3hat(k) and 3hat(i)+3hat(j)+3hat(k) are equi...

    Text Solution

    |

  3. A, B, C and D are four points in space. Using vector methods, prove th...

    Text Solution

    |

  4. Show that x(1) hati+y(1) hatj+ z1hatk, x2hati+y2hatj+z2hatk and x3hati...

    Text Solution

    |

  5. The position vectors of points of intersection of three planes rcdotn1...

    Text Solution

    |

  6. A pentagon is formed by cutting a triangular corner from a rectangular...

    Text Solution

    |

  7. In a three-dimensional coordinate system, P ,Q ,a n dR are images o...

    Text Solution

    |

  8. A plane 2x+3y+5z=1 has a point P which is at minimum distance from lin...

    Text Solution

    |

  9. The locus of point which moves in such a way that its distance from th...

    Text Solution

    |

  10. A cube C={(x, y, z)|o le x, y, zle1} is cut by a sharp knife along the...

    Text Solution

    |

  11. A ray of light is sent through the point P(1,2,3) and is reflected on ...

    Text Solution

    |

  12. Find dy/dx if 2x-3sinx=2y

    Text Solution

    |

  13. The shortest distance between any two opposite edges of the tetrahedro...

    Text Solution

    |

  14. The angle between the pair of planes represented by equation 2x^(2)-2y...

    Text Solution

    |

  15. Let (p, q, r) be a point on the plane 2x+2y+z=6, then the least value ...

    Text Solution

    |

  16. The four lines drawing from the vertices of any tetrahedron to the cen...

    Text Solution

    |

  17. The shorteast distance from (1, 1, 1) to the line of intersection of t...

    Text Solution

    |

  18. The shortest distance between the two lines L1:x=k1, y=k2 and L2: x=k3...

    Text Solution

    |

  19. A=[{:(l(1),m(1),n(1)),(l(2),m(2),n(2)),(l(3),m(3),n(3)):}] and B=[{:(p...

    Text Solution

    |

  20. ABCD is a tetrahedron such that each of the triangleABC, triangleABD a...

    Text Solution

    |