Home
Class 12
MATHS
Statement 1: If the vectors veca and vec...

Statement 1: If the vectors `veca` and `vecc` are non collinear, then the lines `vecr=6veca-vecc+lamda(2vecc-veca)` and `vecr=veca-vecc+mu(veca+3vecc)` are coplanar.
Statement 2: There exists `lamda` and `mu` such that the two values of `vecr` in statement -1 become same

A

Statement-I is true, Statement II is also true, Statement-II is the correct explanation of Statement-I.

B

Statement-I is true, Statement-II is also true, Statement-II is not the correct explanation of Statement-I.

C

Statement-I is true, Statement-II is false.

D

Statement-I is false, Statement -II is true.

Text Solution

Verified by Experts

The correct Answer is:
(a)
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|33 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 9 : Match Type Questions|7 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|28 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If the vectors veca, vecb, and vecc are coplanar show that |(veca,vecb,vecc),(veca.veca, veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc)|=0

If vec a , vec ba n d vec c are three non-zero non-coplanar vectors, then the value of (veca.veca)vecb×vecc+(veca.vecb)vecc×veca+(veca.vecc)veca×vecb.

If vecr.veca=vecr.vecb=vecr.vecc=0 " where "veca,vecb and vecc are non-coplanar, then

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vecc and (2lamda-1)vecc are non coplanar for

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vec and (2lamda-1)vecc are non coplanar for

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)