Home
Class 12
MATHS
If vec a=6hat(i)+7hat(j)+7hat(k), find t...

If `vec a=6hat(i)+7hat(j)+7hat(k)`, find the unit vector along with this vector

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector along the given vector \(\vec{a} = 6\hat{i} + 7\hat{j} + 7\hat{k}\), we will follow these steps: ### Step 1: Identify the vector The vector is given as: \[ \vec{a} = 6\hat{i} + 7\hat{j} + 7\hat{k} \] ### Step 2: Calculate the magnitude of the vector The magnitude of a vector \(\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}\) is calculated using the formula: \[ |\vec{a}| = \sqrt{x^2 + y^2 + z^2} \] For our vector: - \(x = 6\) - \(y = 7\) - \(z = 7\) Now, we calculate the magnitude: \[ |\vec{a}| = \sqrt{6^2 + 7^2 + 7^2} \] Calculating each term: \[ 6^2 = 36, \quad 7^2 = 49, \quad 7^2 = 49 \] Now, add these values: \[ |\vec{a}| = \sqrt{36 + 49 + 49} = \sqrt{134} \] ### Step 3: Calculate the unit vector The unit vector \(\hat{a}\) in the direction of \(\vec{a}\) is given by: \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} \] Substituting the values we have: \[ \hat{a} = \frac{6\hat{i} + 7\hat{j} + 7\hat{k}}{\sqrt{134}} \] This can be expressed as: \[ \hat{a} = \frac{6}{\sqrt{134}}\hat{i} + \frac{7}{\sqrt{134}}\hat{j} + \frac{7}{\sqrt{134}}\hat{k} \] ### Final Result Thus, the unit vector along \(\vec{a}\) is: \[ \hat{a} = \frac{6}{\sqrt{134}}\hat{i} + \frac{7}{\sqrt{134}}\hat{j} + \frac{7}{\sqrt{134}}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 9 : Match Type Questions|7 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|26 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

let vec a= ( hat i+ hat j+ hat k) then find the unit vector along this vector

The scalar product of the vector vec a= hat i+ hat j+ hat k with a unit vector along the sum of the vectors vec b=2 hat i+4 hat j-5 hat k\ a n d\ vec c=lambda hat i+2 hat j+3 hat k is equal to 1. Find the value of lambda and hence find the unit vector along vec b+ vec cdot

Let vector be the 2hat(i)+hat(j)-hat(k) then find the unit vector in the direction of a vector

The scalar product of the vector hat i+\ hat j+\ hat k\ with the unit vector along the sum of vectors 2 hat i+\ 4 hat j-5 hat k . and lambda hat i+\ 2 hat j+\ 3 hat k\ is equal to one. Find the value of lambda .

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

For given vectors, -> a=2 hat i- hat j+2 hat k and -> b=- hat i+ hat j- hat k find the unit vector in the direction of the vector -> a+ -> b .

If vec a= hat i+ hat j- hat k ,\ vec b=- hat i+2 hat j+2 hat k\ a n d\ vec c=- hat i+2 hat j- hat k , then a unit vector normal to the vectors a+b\ a n d\ b-c is

If veca= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k and vecc= hat i-2 hat j+ hat k find a unit vector parallel to the vector 2 veca- vecb+3 vecc .

ARIHANT MATHS ENGLISH-THREE DIMENSIONAL COORDINATE SYSTEM-Exercise (Passage Based Questions)
  1. For positive l, m and n, if the points x=ny+mz, y=lz+nx, z=mx+ly inter...

    Text Solution

    |

  2. If a=6hat(i)+7hat(j)+7hat(k), b=3hat(i)+2hat(j)-2hat(k), P(1, 2, 3) ...

    Text Solution

    |

  3. If a=6hat(i)+7hat(j)+7hat(k), b=3hat(i)+2hat(j)-2hat(k), P(1, 2, 3) ...

    Text Solution

    |

  4. If vec a=6hat(i)+7hat(j)+7hat(k), find the unit vector along with this...

    Text Solution

    |

  5. If A(-2,2,3)a n dB(13 ,-3,13) are two points. Find the locus of a poin...

    Text Solution

    |

  6. A(-2, 2, 3) and B(13, -3, 13) and L is a line through A. Q. Coordina...

    Text Solution

    |

  7. A(-2, 2, 3) and B(13, -3, 13) and L is a line through A. Q. Equation...

    Text Solution

    |

  8. Expand |(3, 6), (5,0)|

    Text Solution

    |

  9. If b be the foot of perpendicular from A to the plane rcdothat(n)=d, t...

    Text Solution

    |

  10. What is vector equation of the line

    Text Solution

    |

  11. A circle is the locus of a point in a plane such that its distance fro...

    Text Solution

    |

  12. A circle is the locus of a point in a plane such that its distance fro...

    Text Solution

    |

  13. A circle is the locus of a point in a plane such that its distance fro...

    Text Solution

    |

  14. Let A(2, 3, 5), B(-1, 3, 2), C(lambda, 5, mu) are the vertices of a tr...

    Text Solution

    |

  15. let vec a = 2hat i +3hat j and vec b = hat i +4hat j then find project...

    Text Solution

    |

  16. The line of greatest slope on an inclined plane P1 is that line in the...

    Text Solution

    |

  17. The line of greatest slope on an inclined plane P1 is that line in the...

    Text Solution

    |

  18. Given four points A(2, 1, 0), B(1, 0, 1), C(3, 0, 1) and D(0, 0, 2). P...

    Text Solution

    |

  19. Given four points A(2, 1, 0), B(1, 0, 1), C(3, 0, 1) and D(0, 0, 2). P...

    Text Solution

    |

  20. Given four points A(2, 1, 0), B(1, 0, 1), C(3, 0, 1) and D(0, 0, 2). ...

    Text Solution

    |