Home
Class 12
MATHS
A line passes through (1, -1, 3) and is ...

A line passes through `(1, -1, 3)` and is perpendicular to the lines `vecr=(hat(i)+hat(j)-hat(k))+lambda(2hat(i)-2hat(j)+hat(k))` and `vecr=(2hat(i)-hat(j)-3hat(k))+mu(hat(i)+2hat(j)+2hat(k)).` Obtain its equation.

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the line that passes through the point \( (1, -1, 3) \) and is perpendicular to the given lines, we will follow these steps: ### Step 1: Identify Direction Vectors of the Given Lines The first line \( L_1 \) is given by: \[ \vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda(2\hat{i} - 2\hat{j} + \hat{k}) \] From this, we can identify the direction vector \( \vec{b} \) of line \( L_1 \): \[ \vec{b} = 2\hat{i} - 2\hat{j} + \hat{k} \] The second line \( L_2 \) is given by: \[ \vec{r} = 2\hat{i} - \hat{j} - 3\hat{k} + \mu(\hat{i} + 2\hat{j} + 2\hat{k}) \] From this, we can identify the direction vector \( \vec{d} \) of line \( L_2 \): \[ \vec{d} = \hat{i} + 2\hat{j} + 2\hat{k} \] ### Step 2: Find the Cross Product of the Direction Vectors To find a direction vector for the line we want, we need to calculate the cross product \( \vec{b} \times \vec{d} \): \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -2 & 1 \\ 2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -2 \\ 1 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -2 & 1 \\ 2 & 2 \end{vmatrix} = (-2)(2) - (1)(2) = -4 - 2 = -6 \) 2. \( \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (2)(2) - (1)(1) = 4 - 1 = 3 \) 3. \( \begin{vmatrix} 2 & -2 \\ 1 & 2 \end{vmatrix} = (2)(2) - (-2)(1) = 4 + 2 = 6 \) Putting it all together: \[ \vec{b} \times \vec{d} = -6\hat{i} - 3\hat{j} + 6\hat{k} \] ### Step 3: Write the Equation of the Line The line we are looking for passes through the point \( (1, -1, 3) \) and has a direction vector \( \vec{n} = -6\hat{i} - 3\hat{j} + 6\hat{k} \). The equation of the line can be expressed in vector form as: \[ \vec{r} = \vec{P} + \alpha \vec{n} \] where \( \vec{P} = \hat{i} - \hat{j} + 3\hat{k} \) and \( \alpha \) is a scalar parameter. ### Final Equation Thus, the equation of the line can be written as: \[ \vec{r} = (1, -1, 3) + \alpha (-6, -3, 6) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Three Dimensional Coordinate System Exercise 11 : Subjective Type Questions|1 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|44 Videos
  • THREE DIMENSIONAL COORDINATE SYSTEM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|26 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=2 hat i- hat j- hat k+mu(2 hat i+ hat j+2 hat k)

Find the shortest distance between the lines vec r=( hat i+2 hat j+ hat k)+lambda( hat i- hat j+ hat k) and vec r=(2 hat i- hat j- hat k)+mu(2 hat i+ hat j+2 hat k)

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :