Home
Class 12
MATHS
If Delta(1) is the area of the triangle ...

If `Delta_(1)` is the area of the triangle with vertices `(0, 0), (a tan alpha, b cot alpha), (a sin alpha, b cos alpha), Delta_(2)` is the area of the triangle with vertices `(a sec^(2) alpha, b cos ec^(2) alpha), (a + a sin^(2)alpha, b + b cos^(2)alpha)` and `Delta_(3)` is the area of the triangle with vertices `(0,0), (a tan alpha, -b cot alpha), (a sin alpha, b cos alpha)`. Show that there is no value of `alpha` for which `Delta_(1), Delta_(2)` and `Delta_(3)` are in GP.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

The sides of the triangle are sin alpha , cos alpha and sqrt(1+sinalphacosalpha) for some 0 lt alpha lt (pi)/2 . Then the greatest angle of the triangle is

The points A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta) are the vertices of a right angled triangle if :

The area of the triangle formed by the axes & the line (cosh alpha -sinh alpha )x+(cosh alpha +sinh alpha)y=2 in square units is

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

In Delta ABC , prove that c cos (A - alpha) + a cos (C + alpha) = b cos alpha

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|