Home
Class 12
MATHS
The diameter of the nine point circle of...

The diameter of the nine point circle of the triangle with vertices `(3, 4), (5 cos theta, 5 sin theta)` and `(5 sin theta, -5 cos theta)`, where `theta in R`, is

Text Solution

AI Generated Solution

The correct Answer is:
To find the diameter of the nine-point circle of the triangle with vertices \( A(3, 4) \), \( B(5 \cos \theta, 5 \sin \theta) \), and \( C(5 \sin \theta, -5 \cos \theta) \), we will follow these steps: ### Step 1: Identify the vertices of the triangle The vertices are given as: - \( A(3, 4) \) - \( B(5 \cos \theta, 5 \sin \theta) \) - \( C(5 \sin \theta, -5 \cos \theta) \) ### Step 2: Find the circumradius \( R \) The circumradius \( R \) can be found using the distances from the circumcenter (which we will take as the origin \( O(0, 0) \)) to each vertex. #### Step 2.1: Calculate \( OA \) Using the distance formula: \[ OA = \sqrt{(3 - 0)^2 + (4 - 0)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] #### Step 2.2: Calculate \( OB \) Using the distance formula: \[ OB = \sqrt{(5 \cos \theta - 0)^2 + (5 \sin \theta - 0)^2} = \sqrt{(5 \cos \theta)^2 + (5 \sin \theta)^2} \] \[ = \sqrt{25 \cos^2 \theta + 25 \sin^2 \theta} = \sqrt{25(\cos^2 \theta + \sin^2 \theta)} = \sqrt{25 \cdot 1} = 5 \] #### Step 2.3: Calculate \( OC \) Using the distance formula: \[ OC = \sqrt{(5 \sin \theta - 0)^2 + (-5 \cos \theta - 0)^2} = \sqrt{(5 \sin \theta)^2 + (-5 \cos \theta)^2} \] \[ = \sqrt{25 \sin^2 \theta + 25 \cos^2 \theta} = \sqrt{25(\sin^2 \theta + \cos^2 \theta)} = \sqrt{25 \cdot 1} = 5 \] ### Step 3: Conclude the circumradius Since \( OA = OB = OC = 5 \), we have: \[ R = 5 \] ### Step 4: Find the radius of the nine-point circle \( R_n \) The radius of the nine-point circle is given by the formula: \[ R_n = \frac{1}{2} R \] Substituting the value of \( R \): \[ R_n = \frac{1}{2} \times 5 = \frac{5}{2} \] ### Step 5: Find the diameter of the nine-point circle The diameter \( D \) of the nine-point circle is: \[ D = 2 R_n = 2 \times \frac{5}{2} = 5 \] ### Final Answer Thus, the diameter of the nine-point circle is \( 5 \). ---
Promotional Banner

Topper's Solved these Questions

  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise EXERCISE : 5|2 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The area of the triangle with vertices (a, 0), (a cos theta, b sin theta), (a cos theta, -b sin theta) is

Vertices of a variable triangle are (3, 4), (5 cos theta, 5 sin theta) and (5 sin theta, -5 cos theta) , where theta in R . Locus of its orthocentre is

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

If 3 sin theta+5 cos theta = 5 , show that: 5 sin theta - 3 cos theta = +-3

Locus of the point (cos theta +sin theta, cos theta - sin theta) where theta is parameter is

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If 5 cos theta = 6 , sin theta , evalutate : tan theta

Solve cos4theta+sin5theta=2