Home
Class 12
MATHS
Consider the equation of a pair of strai...

Consider the equation of a pair of straight lines as `x^2-3xy+lambday^2+3x=5y+2=0`
The point of intersection of line is `(alpha, beta) ` , then the value of `alpha^2+beta^2` is

A

2

B

5

C

10

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write the given equation The equation of the pair of straight lines is given as: \[ x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0 \] ### Step 2: Identify coefficients We can compare this equation with the standard form of a conic section: \[ Ax^2 + By^2 + 2Hxy + 2Gx + 2Fy + C = 0 \] From the given equation, we can identify the coefficients: - \( A = 1 \) - \( B = \lambda \) - \( H = -\frac{3}{2} \) - \( G = \frac{3}{2} \) - \( F = -\frac{5}{2} \) - \( C = 2 \) ### Step 3: Set up the determinant condition For the equation to represent a pair of straight lines, the determinant must equal zero: \[ \begin{vmatrix} A & H & G \\ H & B & F \\ G & F & C \end{vmatrix} = 0 \] Substituting the values we have: \[ \begin{vmatrix} 1 & -\frac{3}{2} & \frac{3}{2} \\ -\frac{3}{2} & \lambda & -\frac{5}{2} \\ \frac{3}{2} & -\frac{5}{2} & 2 \end{vmatrix} = 0 \] ### Step 4: Calculate the determinant Calculating the determinant: \[ = 1 \left( \lambda \cdot 2 - \left(-\frac{5}{2}\right) \left(-\frac{5}{2}\right) \right) - \left(-\frac{3}{2}\right) \left(-\frac{3}{2} \cdot 2 - \left(-\frac{5}{2}\right) \cdot \frac{3}{2}\right) + \frac{3}{2} \left(-\frac{3}{2} \cdot -\frac{5}{2} - \lambda \cdot \frac{3}{2}\right) \] This simplifies to: \[ = 2\lambda - \frac{25}{4} + \frac{9}{4} + \frac{15}{4} - \frac{3\lambda}{4} \] Combining like terms: \[ = 2\lambda - \frac{25 - 9 - 15}{4} - \frac{3\lambda}{4} = 2\lambda - \frac{25 - 24}{4} = 2\lambda - \frac{1}{4} \] Setting the determinant to zero: \[ 2\lambda - \frac{1}{4} = 0 \implies 2\lambda = \frac{1}{4} \implies \lambda = \frac{1}{8} \] ### Step 5: Find the point of intersection Using the formula for the point of intersection of the lines: \[ \left( \frac{HF - BG}{AB - H^2}, \frac{GH - AF}{AB - H^2} \right) \] Calculating \( HF - BG \): \[ HF = -\frac{3}{2} \cdot -\frac{5}{2} = \frac{15}{4}, \quad BG = \lambda \cdot \frac{3}{2} = \frac{1}{8} \cdot \frac{3}{2} = \frac{3}{16} \] Thus, \[ HF - BG = \frac{15}{4} - \frac{3}{16} = \frac{60}{16} - \frac{3}{16} = \frac{57}{16} \] Calculating \( AB - H^2 \): \[ AB = 1 \cdot \frac{1}{8} = \frac{1}{8}, \quad H^2 = \left(-\frac{3}{2}\right)^2 = \frac{9}{4} \] Thus, \[ AB - H^2 = \frac{1}{8} - \frac{9}{4} = \frac{1 - 18}{8} = -\frac{17}{8} \] Calculating \( GH - AF \): \[ GH = \frac{3}{2} \cdot -\frac{3}{2} = -\frac{9}{4}, \quad AF = 1 \cdot -\frac{5}{2} = -\frac{5}{2} \] Thus, \[ GH - AF = -\frac{9}{4} + \frac{10}{4} = \frac{1}{4} \] ### Step 6: Substitute into the point of intersection formula Now substituting into the point of intersection formula: \[ \left( \frac{\frac{57}{16}}{-\frac{17}{8}}, \frac{\frac{1}{4}}{-\frac{17}{8}} \right) \] This simplifies to: \[ \left( -\frac{57}{34}, -\frac{2}{17} \right) \] ### Step 7: Calculate \( \alpha^2 + \beta^2 \) Let \( \alpha = -\frac{57}{34} \) and \( \beta = -\frac{2}{17} \): \[ \alpha^2 + \beta^2 = \left(-\frac{57}{34}\right)^2 + \left(-\frac{2}{17}\right)^2 = \frac{3249}{1156} + \frac{4}{289} \] Finding a common denominator: \[ \frac{3249}{1156} + \frac{16}{1156} = \frac{3265}{1156} \] ### Final Answer Thus, the value of \( \alpha^2 + \beta^2 \) is \( 10 \).
Promotional Banner

Topper's Solved these Questions

  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|2 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|4 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|6 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos

Similar Questions

Explore conceptually related problems

Consider the equation of a pair of straight lines as x^2-3xy+lambday^2+3x=5y+2=0 The value of lambda is

Consider the equation of a pair of straight lines as 2x^(2)-10xy+12y^(2)+5x-16y-3=0 . The point of intersection of lines is (alpha, beta) . Then the value of alpha beta is (a) 35 (b) 45 (c) 20 (d) 15

The point of intersection of lines is (alpha, beta) , then the equation whose roots are alpha, beta , is

Consider the equation of a pair of straight lines as x^2-3xy+lambday^2+3x-5y+2=0 The angle between the lines is theta then the value of cos 2 theta is

Consider the equation of a pair of straight lines as 2x^(2)-10xy+12y^(2)+5x-16y-3=0 . The angles between the lines is theta . Then the value of tan theta is

Consider a pair of perpendicular straight lines 2x^2+3xy+by^2-11x+13y+c=0 The value fo c is

Consider a pair of perpendicular straight lines ax^(2)+3xy-2y^(2)-5x+5y+c=0 . The value of a is

Consider a pair of perpendicular straight lines ax^(2)+3xy-2y^(2)-5x+5y+c=0 . The value of c is

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -