Home
Class 12
MATHS
Show that the locus of the point of inte...

Show that the locus of the point of intersection of mutually perpendicular tangetns to a parabola is its directrix.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise JEE type solved examples|1 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|20 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos

Similar Questions

Explore conceptually related problems

Statement-1: y+b=m_(1) (x+a) and y+b=m_(2)(x+a) are perpendicular tangents to the parabola y^(2)=4ax . Statement-2: The locus of the point of intersection of perpendicular tangents to a parabola is its directrix.

Statement-1: The tangents at the extremities of a focal chord of the parabola y^(2)=4ax intersect on the line x + a = 0. Statement-2: The locus of the point of intersection of perpendicular tangents to the parabola is its directrix

The locus of the point of intersection of the perpendicular tangents to the parabola x^2=4ay is .

Show that the locus of point of intersection of perpendicular tangents to the parabola y^2=4ax is the directrix x+a=0.

The locus of the point of intersection of perpendicular tangents to the parabola y^(2)=4ax is

The locus of point of intersection of perpendicular tangent to parabola y^2= 4ax

The locus of point of intersection of perpendicular tangents drawn to x^(2) = 4ay is

Statement 1 : mutually perpendicular tangents are drawn from point (alpha, 7) to ellipse x^2/576 + y^2/49 = 1 then alpha = +- 24 . Statement 2 : Locus of points of intersection of mutually perpendicular tangents to an ellipse is a circle

Find the equation of the system of coaxial circles that are tangent at (sqrt(2), 4) to the locus of the point of intersection of two mutually perpendicular tangents to the circle x^2 + y^2 = 9 .

Find the locus of the point of intersection of two mutually perpendicular normals to the parabola y^2=4ax and show that the abscissa of the point can never be smaller than 3a. What is the ordinate

ARIHANT MATHS ENGLISH-PARABOLA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Show that the locus of the point of intersection of mutually perpendic...

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let P be the point (1,0) and Q be a point on the locus y^(2)=8x. The l...

    Text Solution

    |

  4. The axis of a parabola is along the line y=x and the distance of its v...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. The locus of the vertex of the family of parabolas y=(a^3x^2)/3+(a^(2x...

    Text Solution

    |

  7. The angle between the tangents to the curve y=x^2-5x+6 at the point (2...

    Text Solution

    |

  8. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  9. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  10. Find slope of tangent to the curve if equation is x^2 + y^2 = 9

    Text Solution

    |

  11. Statement 1 : The curve y=-(x^2)/2+x+1 is symmetric with respect to th...

    Text Solution

    |

  12. The equation of a tangent to the parabola y^2=""8x""i s""y""=""x""+...

    Text Solution

    |

  13. Consider two curves C1:y^2=4x ; C2=x^2+y^2-6x+1=0. Then, a. C1 and C2 ...

    Text Solution

    |

  14. If a parabola has the origin as its focus and the line x = 2 as the ...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. Let A and B be two distinct points on the parabola y^2=4x. If the ax...

    Text Solution

    |

  17. If two tangents drawn from a point P to the parabola y2 = 4x are at ri...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |

  21. about to only mathematics

    Text Solution

    |