Home
Class 12
MATHS
If the normals to the parabola y^2=4a x ...

If the normals to the parabola `y^2=4a x` at three points `P ,Q ,a n dR` meet at `A ,a n dS` is the focus, then `S PdotS qdotS R` is equal to `a^2S A` (b) `S A^3` (c) `a S A^2` (d) none of these

Text Solution

Verified by Experts

The correct Answer is:
`a(SA)^2`
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|36 Videos
  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos

Similar Questions

Explore conceptually related problems

The tangents to the parabola y^2=4a x at the vertex V and any point P meet at Q . If S is the focus, then prove that S PdotS Q , and S V are in GP.

The tangents to the parabola y^2=4a x at the vertex V and any point P meet at Q . If S is the focus, then prove that S PdotS Q , and S V are in GP.

If PQ and Rs are normal chords of the parabola y^(2) = 8x and the points P,Q,R,S are concyclic, then

If the normal at P on y^(2)= 4ax cuts the axis of the parabola in G and S is the focus then SG=

If the normals at P, Q, R of the parabola y^2=4ax meet in O and S be its focus, then prove that .SP . SQ . SR = a . (SO)^2 .

If the tangents at the points Pa n dQ on the parabola y^2=4a x meet at T ,a n dS is its focus, the prove that S P ,S T ,a n dS Q are in GP.

If the tangents at the points Pa n dQ on the parabola y^2=4a x meet at T ,a n dS is its focus, the prove that S P ,S T ,a n dS Q are in GP.

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .

Two mutually perpendicular tangents of the parabola y^2=4a x meet the axis at P_1a n dP_2 . If S is the focus of the parabola, then 1/(S P_1) +1/(S P_2) is equal to 4/a (b) 2/1 (c) 1/a (d) 1/(4a)

Tangents and normal drawn to the parabola y^2=4a x at point P(a t^2,2a t),t!=0, meet the x-axis at point Ta n dN , respectively. If S is the focus of theparabola, then (a) S P=S T!=S N (b) S P!=S T=S N (c) S P=S T=S N (d) S P!=S T!=S N