Home
Class 12
MATHS
The axis of a parabola is along the line...

The axis of a parabola is along the line y=x and the distance of its vertex and focus from origin are `sqrt(2)` and `2sqrt(2)`, respectively. If vertex and focus both lie in the first quadrant, then find equation of the parabola.

A

`(x+y)^2=(x-y-2)`

B

`(x-y)^2=(x+y+2)`

C

`(x-y)^2=4(x+y-2)`

D

`(x-y)^2=8(x+y-2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|13 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • PERMUTATIONS AND COMBINATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|28 Videos

Similar Questions

Explore conceptually related problems

The axis of a parabola is along the line y=x and the distance of its vertex and focus from the origin are sqrt(2) and 2sqrt(2) , respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is (a) (x+y)^2=(x-y-2) (b) (x-y)^2=(x+y-2) (c) (x-y)^2=4(x+y-2) (d) (x-y)^2=8(x+y-2)

The axis of parabola is along the line y=x and the distance of its vertex and focus from origin are sqrt2 and 2 sqrt2 respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is :

If the points (0,4)a n d(0,2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.

If the points (0,4)a n d(0,2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.

The axis of a parabola is along the line y = x and its vertex and focus are in the first quadrant at distances sqrt2,2sqrt2 respectively, from the origin. The equation of the parabola, is

vertex and focus of a parabola are (-1,1) and (2,3) respectively. find the equation of the directrix.

vertex and focus of a parabola are (-1,1) and (2,3) respectively. find the equation of the directrix.

If (0, 3) and (0, 2) are respectively the vertex and focus of a parabola, then its equation, is

If the vertex and focus of a parabola are (3,3) and (-3,3) respectively, then its equation is

The point (0,4) and (0,2) are the vertex and focus of a parabola. Find the equation of the parabola.

ARIHANT MATHS ENGLISH-PARABOLA-Exercise (Questions Asked In Previous 13 Years Exam)
  1. about to only mathematics

    Text Solution

    |

  2. Let P be the point (1,0) and Q be a point on the locus y^(2)=8x. The l...

    Text Solution

    |

  3. The axis of a parabola is along the line y=x and the distance of its v...

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The locus of the vertex of the family of parabolas y=(a^3x^2)/3+(a^(2x...

    Text Solution

    |

  6. The angle between the tangents to the curve y=x^2-5x+6 at the point (2...

    Text Solution

    |

  7. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  8. Consider the circle x^2 + y^2 = 9 and the parabola y^2 = 8x. They inte...

    Text Solution

    |

  9. Find slope of tangent to the curve if equation is x^2 + y^2 = 9

    Text Solution

    |

  10. Statement 1 : The curve y=-(x^2)/2+x+1 is symmetric with respect to th...

    Text Solution

    |

  11. The equation of a tangent to the parabola y^2=""8x""i s""y""=""x""+...

    Text Solution

    |

  12. Consider two curves C1:y^2=4x ; C2=x^2+y^2-6x+1=0. Then, a. C1 and C2 ...

    Text Solution

    |

  13. If a parabola has the origin as its focus and the line x = 2 as the ...

    Text Solution

    |

  14. about to only mathematics

    Text Solution

    |

  15. Let A and B be two distinct points on the parabola y^2=4x. If the ax...

    Text Solution

    |

  16. If two tangents drawn from a point P to the parabola y2 = 4x are at ri...

    Text Solution

    |

  17. about to only mathematics

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |