Home
Class 12
MATHS
Evaluate lim(nto oo)((n+2)!+(n+1)!)/((n+...

Evaluate `lim_(nto oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{(n+2)! + (n+1)!}{(n+2)! - (n+1)!}, \] we will follow these steps: ### Step 1: Rewrite the factorials We can express the factorials in terms of \( (n+1)! \): \[ (n+2)! = (n+2)(n+1)!. \] So, we can rewrite the limit as: \[ \lim_{n \to \infty} \frac{(n+2)(n+1)! + (n+1)!}{(n+2)(n+1)! - (n+1)!}. \] ### Step 2: Factor out \( (n+1)! \) Now, we can factor \( (n+1)! \) from both the numerator and the denominator: \[ = \lim_{n \to \infty} \frac{(n+1)! \left( (n+2) + 1 \right)}{(n+1)! \left( (n+2) - 1 \right)}. \] ### Step 3: Simplify the expression The \( (n+1)! \) cancels out: \[ = \lim_{n \to \infty} \frac{n + 3}{n + 1}. \] ### Step 4: Divide by \( n \) To simplify further, we can divide both the numerator and the denominator by \( n \): \[ = \lim_{n \to \infty} \frac{1 + \frac{3}{n}}{1 + \frac{1}{n}}. \] ### Step 5: Evaluate the limit Now, as \( n \to \infty \), \( \frac{3}{n} \) and \( \frac{1}{n} \) both approach 0: \[ = \frac{1 + 0}{1 + 0} = \frac{1}{1} = 1. \] ### Final Answer Thus, the limit is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(n->oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

lim_(n to oo)(n!)/((n+1)!-n!)

Write the value of (lim)_(n->oo)(n !+(n+1)!)/((n+1)!+(n+2)!)

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

The value of lim_(nto oo)(a^(n)+b^(n))/(a^(n)-b^(n)), (where agtbgt is

Evaluate: ("lim")_(n→oo)(n^p sin^2(n !))/(n+1)

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .