Home
Class 12
MATHS
If lim(xtooo)((x^(2)+1)/(x+1)-ax-b)=0, f...

If `lim_(xtooo)((x^(2)+1)/(x+1)-ax-b)=0`, find the values of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right) = 0 \] ### Step-by-Step Solution: **Step 1: Combine the terms into a single fraction.** We start with the expression inside the limit: \[ \frac{x^2 + 1}{x + 1} - ax - b \] To combine these terms, we can rewrite it as: \[ \frac{x^2 + 1 - (ax + b)(x + 1)}{x + 1} \] **Step 2: Expand the numerator.** Now, we need to expand the numerator: \[ x^2 + 1 - (ax^2 + ax + bx + b) = x^2 + 1 - ax^2 - (a + b)x - b \] This simplifies to: \[ (1 - a)x^2 + (1 - b - a)x + 1 \] **Step 3: Set up the limit.** Now we have: \[ \lim_{x \to \infty} \frac{(1 - a)x^2 + (1 - b - a)x + 1}{x + 1} \] **Step 4: Analyze the degrees of the numerator and denominator.** For the limit to exist and equal zero as \( x \to \infty \), the degree of the numerator must be less than the degree of the denominator. The denominator has a degree of 1, so we need the coefficient of \( x^2 \) in the numerator to be zero: \[ 1 - a = 0 \implies a = 1 \] **Step 5: Substitute \( a \) back into the limit.** Now substituting \( a = 1 \) into the numerator: \[ (1 - 1)x^2 + (1 - b - 1)x + 1 = (1 - b)x + 1 \] So the limit becomes: \[ \lim_{x \to \infty} \frac{(1 - b)x + 1}{x + 1} \] **Step 6: Simplify the limit expression.** Now we can simplify this limit: \[ = \lim_{x \to \infty} \frac{(1 - b) + \frac{1}{x}}{1 + \frac{1}{x}} = 1 - b \] **Step 7: Set the limit equal to zero.** For the limit to equal zero: \[ 1 - b = 0 \implies b = 1 \] ### Final Values: Thus, the values of \( a \) and \( b \) are: \[ \boxed{a = 1, b = 1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtooo) {(x^(2)+1)/(x+1)-(ax+b)}=0, then find the values of a and b.

If lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4, then

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , then

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

If ("lim")_(xvecoo){(x^2+1)/(x+1)-(a x+b)}=0, then find the value of aa n dbdot

If lim_(xto0) (ae^(x)-b)/(x) =2, then find the values of a and b.

If lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2 then find the values of a and b.

If lim_(xtooo)(1+a/x+b/(x^(2)))^(2x)=e^2 then values of a and b are

If l=lim_(xtooo)((x+1)/(x-1))^(x) , the value of {l} and [l] are

If lim_(xto oo){(x^2+1)/(x+1)-(ax+b)}to oo , then