Home
Class 12
MATHS
If lim(xto oo){(x^2+1)/(x+1)-ax-b}=2, th...

If `lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2`, then

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to \infty} \left( \frac{x^2 + 1}{x + 1} - ax - b \right) = 2 \] ### Step 1: Simplify the expression inside the limit We start with the expression: \[ \frac{x^2 + 1}{x + 1} - ax - b \] To combine the terms, we can take the common denominator \( x + 1 \): \[ \lim_{x \to \infty} \left( \frac{x^2 + 1 - (ax + b)(x + 1)}{x + 1} \right) \] ### Step 2: Expand the numerator Now, we expand the numerator: \[ x^2 + 1 - (ax^2 + ax + bx + b) = x^2 + 1 - ax^2 - (a + b)x - b \] This simplifies to: \[ (1 - a)x^2 - (a + b)x + (1 - b) \] ### Step 3: Rewrite the limit Now we can rewrite our limit: \[ \lim_{x \to \infty} \frac{(1 - a)x^2 - (a + b)x + (1 - b)}{x + 1} \] ### Step 4: Analyze the limit as \( x \to \infty \) For the limit to exist and equal 2, the coefficient of \( x^2 \) in the numerator must be zero (otherwise the limit would diverge). Therefore, we set: \[ 1 - a = 0 \implies a = 1 \] ### Step 5: Substitute \( a \) back into the limit Now substituting \( a = 1 \) into the limit expression: \[ \lim_{x \to \infty} \frac{- (1 + b)x + (1 - b)}{x + 1} \] ### Step 6: Simplify further Now, we can factor out \( x \) from the numerator: \[ \lim_{x \to \infty} \frac{- (1 + b)x + (1 - b)}{x + 1} = \lim_{x \to \infty} \frac{- (1 + b) + \frac{1 - b}{x}}{1 + \frac{1}{x}} \] As \( x \to \infty \), the term \( \frac{1 - b}{x} \) approaches 0, and \( \frac{1}{x} \) also approaches 0. Thus, we have: \[ \lim_{x \to \infty} \frac{-(1 + b)}{1} = - (1 + b) \] ### Step 7: Set the limit equal to 2 We need this limit to equal 2: \[ -(1 + b) = 2 \implies 1 + b = -2 \implies b = -3 \] ### Final Result Thus, we have found: \[ a = 1, \quad b = -3 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto oo){(x^2+1)/(x+1)-(ax+b)}to oo , then

lim_(xto oo)(x/(1+x))^(x) is

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

lim_(xto oo)(ln(x^(2)+5x)-2ln(cx+1)=-2 then

Evaluate lim_(xto oo)(ax^(2)+b)/(x+1) when age0

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

If lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2 then find the values of a and b.

If C satisfies the equation lim_(xto oo)((x+c)/(x-c))^(x)=4 then |(e^(c))/2| is ………

If f(x)=x+int_(0)^(1)x^(2).zf(z)dz+int_(0)^(1)xz^(2)f(z)dz then we have lim_(xto oo) (f(x))/((ax^(2)+7x))=20/119 then a = ?