Home
Class 12
MATHS
Solve lim(x to0)(1-cos(1-cosx))/(sin^(4)...

Solve `lim_(x to0)(1-cos(1-cosx))/(sin^(4)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{\sin^4 x} \), we will follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{\sin^4 x} \] ### Step 2: Use the Identity for Cosine Recall the limit identity: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] We will apply this identity to the term \(1 - \cos(1 - \cos x)\). To do this, we first need to analyze \(1 - \cos x\) as \(x\) approaches 0. ### Step 3: Expand \(1 - \cos x\) Using the Taylor series expansion for \(\cos x\) around \(x = 0\): \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] Thus, \[ 1 - \cos x \approx \frac{x^2}{2} \] ### Step 4: Substitute in the Limit Substituting \(1 - \cos x\) in our limit gives: \[ 1 - \cos(1 - \cos x) \approx 1 - \cos\left(\frac{x^2}{2}\right) \] ### Step 5: Apply the Cosine Identity Again Now we apply the cosine limit identity again: \[ 1 - \cos\left(\frac{x^2}{2}\right) \approx \frac{1}{2}\left(\frac{x^2}{2}\right)^2 = \frac{x^4}{8} \] ### Step 6: Substitute Back into the Limit Now we substitute this back into our limit: \[ \lim_{x \to 0} \frac{\frac{x^4}{8}}{\sin^4 x} \] ### Step 7: Use the Sine Limit Identity Using the identity: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \implies \sin x \approx x \text{ as } x \to 0 \] Thus, \[ \sin^4 x \approx x^4 \] ### Step 8: Final Limit Calculation Now substituting this into our limit: \[ \lim_{x \to 0} \frac{\frac{x^4}{8}}{x^4} = \lim_{x \to 0} \frac{1}{8} = \frac{1}{8} \] ### Final Answer Thus, the limit evaluates to: \[ \frac{1}{8} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate: ("lim")_(xto0)(1-"cos"(1-cosx)dot)/(x^4)

Evaluate lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x).

The value of lim_(xrarr 0) (1-cos(1-cos x))/(x^4) is equal to

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

lim_(x rarr0)(1/x)^(1-cos x)

Evaluate underset(xto0)lim(1-cos(1-cosx))/(x^(4)).

If lim_(xrarr0) (f(x))/(x^(2))=a and lim_(xrarr0) (f(1-cosx))/(g(x)sin^(2)x)=b (where b ne 0 ), then lim_(xrarr0) (g(1-cos2x))/(x^(4)) is

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to