Home
Class 12
MATHS
Evaluate lim(xto oo)sqrt((x-sinx)/(x+cos...

Evaluate `lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \infty} \sqrt{\frac{x - \sin x}{x + \cos^2 x}}, \] we will follow these steps: ### Step 1: Rewrite the expression We start with the expression inside the limit: \[ \sqrt{\frac{x - \sin x}{x + \cos^2 x}}. \] ### Step 2: Factor out \(x\) from the numerator and denominator We can factor \(x\) out of both the numerator and the denominator: \[ \sqrt{\frac{x(1 - \frac{\sin x}{x})}{x(1 + \frac{\cos^2 x}{x})}}. \] ### Step 3: Simplify the expression The \(x\) in the numerator and denominator cancels out: \[ \sqrt{\frac{1 - \frac{\sin x}{x}}{1 + \frac{\cos^2 x}{x}}}. \] ### Step 4: Evaluate the limit as \(x\) approaches infinity Now, we need to evaluate the limit of the expression as \(x\) approaches infinity: \[ \lim_{x \to \infty} \sqrt{\frac{1 - \frac{\sin x}{x}}{1 + \frac{\cos^2 x}{x}}}. \] As \(x\) approaches infinity, \(\frac{\sin x}{x}\) approaches \(0\) (since \(\sin x\) is bounded between -1 and 1), and \(\frac{\cos^2 x}{x}\) also approaches \(0\) (since \(\cos^2 x\) is also bounded between 0 and 1). Therefore, we have: \[ \lim_{x \to \infty} \sqrt{\frac{1 - 0}{1 + 0}} = \sqrt{\frac{1}{1}} = \sqrt{1} = 1. \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \sqrt{\frac{x - \sin x}{x + \cos^2 x}} = 1. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to oo) (sinx^(0))/(x).

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate: lim_(xto oo)(2x^(2)-2x-sin^(2)x)/(3x^(2)-4x+cos^(2)x)

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto oo)e^(x)sin (d//e^(x)) .

Evaluate the following limits : Lim_(x to oo) sqrt(((x+sin x)/(x- cos x))) is equal to

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).