Home
Class 12
MATHS
lim(n->oo) co sx/2*co sx/4*co sx/8.........

`lim_(n->oo) co sx/2*co sx/4*co sx/8......co sx/(2^n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \ldots \cos\left(\frac{x}{2^n}\right) \), we can follow these steps: ### Step 1: Rewrite the product using sine We know from trigonometric identities that: \[ \sin(2x) = 2 \sin(x) \cos(x) \] This can be rearranged to express sine in terms of cosine: \[ \sin(x) = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] We can apply this identity iteratively. ### Step 2: Apply the identity repeatedly Applying the identity repeatedly, we can express the sine function in terms of cosines: \[ \sin(x) = 2^n \sin\left(\frac{x}{2^n}\right) \prod_{k=0}^{n-1} \cos\left(\frac{x}{2^k}\right) \] This means: \[ \prod_{k=0}^{n-1} \cos\left(\frac{x}{2^k}\right) = \frac{\sin(x)}{2^n \sin\left(\frac{x}{2^n}\right)} \] ### Step 3: Take the limit as \( n \to \infty \) Now, we need to evaluate: \[ \lim_{n \to \infty} \prod_{k=0}^{n-1} \cos\left(\frac{x}{2^k}\right) = \lim_{n \to \infty} \frac{\sin(x)}{2^n \sin\left(\frac{x}{2^n}\right)} \] ### Step 4: Analyze the limit As \( n \to \infty \), \( \frac{x}{2^n} \to 0 \). We can use the fact that: \[ \lim_{y \to 0} \frac{\sin(y)}{y} = 1 \] Thus, \( \sin\left(\frac{x}{2^n}\right) \sim \frac{x}{2^n} \) as \( n \to \infty \). Therefore, we have: \[ \sin\left(\frac{x}{2^n}\right) \approx \frac{x}{2^n} \] ### Step 5: Substitute back into the limit Substituting this approximation back, we get: \[ \lim_{n \to \infty} \frac{\sin(x)}{2^n \cdot \frac{x}{2^n}} = \lim_{n \to \infty} \frac{\sin(x)}{x} = \frac{\sin(x)}{x} \] ### Final Result Thus, the final result is: \[ \lim_{n \to \infty} \cos\left(\frac{x}{2}\right) \cos\left(\frac{x}{4}\right) \cos\left(\frac{x}{8}\right) \ldots \cos\left(\frac{x}{2^n}\right) = \frac{\sin(x)}{x} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

The value of cos(pi/4)*cos(pi/8)*cos(pi/16)....cos(pi/(2^n)) equals

lim_(x to 0) (cos 2x-1)/(cos x-1)

Statement-1: cos((pi)/(10))cos((2pi)/(10))cos((4pi)/(10))=(cos((8pi)/(10)))/(2^(3)sin((pi)/(10))) Statement-2: cos A.cos2A.cos2^(2)A.......cos(2^(n-1)A)=(sin(2^(n)A))/(2^(n)sinA)

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

lim_(x->0)(1-sqrt(cos2x)*root(3)(cos3x).....root(n)(cosnx))/x^2 has value 10 then value of n equal to