Home
Class 12
MATHS
Evaluate lim(xto a)(log{1+(x-a)})/((x-a)...

Evaluate `lim_(xto a)(log{1+(x-a)})/((x-a))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to a} \frac{\log(1 + (x - a))}{(x - a)}, \] we start by substituting \( x = a \) into the expression. This gives us: \[ \frac{\log(1 + (a - a))}{(a - a)} = \frac{\log(1)}{0} = \frac{0}{0}, \] which is an indeterminate form. Therefore, we can apply L'Hôpital's Rule, which states that if we have a limit of the form \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can differentiate the numerator and denominator separately. ### Step 1: Differentiate the numerator and denominator The numerator is \( \log(1 + (x - a)) \) and the denominator is \( (x - a) \). 1. Differentiate the numerator: \[ \frac{d}{dx} \left( \log(1 + (x - a)) \right) = \frac{1}{1 + (x - a)} \cdot \frac{d}{dx}(x - a) = \frac{1}{1 + (x - a)}. \] 2. Differentiate the denominator: \[ \frac{d}{dx}(x - a) = 1. \] ### Step 2: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to a} \frac{\log(1 + (x - a))}{(x - a)} = \lim_{x \to a} \frac{\frac{1}{1 + (x - a)}}{1}. \] ### Step 3: Evaluate the limit Now we substitute \( x = a \): \[ \lim_{x \to a} \frac{1}{1 + (x - a)} = \frac{1}{1 + (a - a)} = \frac{1}{1} = 1. \] ### Final Answer Thus, the limit is \[ \boxed{1}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate x lim_(xto2) (x-2)/(log_(a)(x-1)).

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(xto 0)(a^(x)-b^(x))/x

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate : lim_(xto8)(e^(x)-e^(8))/(x-8)