Home
Class 12
MATHS
Evaluate lim(hto0)(log(10)(1+h))/h...

Evaluate `lim_(hto0)(log_(10)(1+h))/h`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{h \to 0} \frac{\log_{10}(1+h)}{h} \), we can follow these steps: ### Step 1: Identify the form of the limit When we substitute \( h = 0 \) into the expression, we get: \[ \frac{\log_{10}(1+0)}{0} = \frac{\log_{10}(1)}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule L'Hôpital's Rule states that if we have an indeterminate form of type \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can differentiate the numerator and the denominator separately. The numerator is \( \log_{10}(1+h) \) and the denominator is \( h \). #### Differentiate the numerator: Using the chain rule, the derivative of \( \log_{10}(1+h) \) is: \[ \frac{d}{dh} \log_{10}(1+h) = \frac{1}{(1+h) \ln(10)} \] where \( \ln(10) \) is the natural logarithm of 10. #### Differentiate the denominator: The derivative of \( h \) is simply: \[ \frac{d}{dh} h = 1 \] ### Step 3: Rewrite the limit using the derivatives Now, we can rewrite the limit using the derivatives: \[ \lim_{h \to 0} \frac{\log_{10}(1+h)}{h} = \lim_{h \to 0} \frac{\frac{1}{(1+h) \ln(10)}}{1} \] ### Step 4: Evaluate the limit Now we can substitute \( h = 0 \) into the expression: \[ \lim_{h \to 0} \frac{1}{(1+h) \ln(10)} = \frac{1}{(1+0) \ln(10)} = \frac{1}{\ln(10)} \] ### Final Result Thus, the limit is: \[ \lim_{h \to 0} \frac{\log_{10}(1+h)}{h} = \frac{1}{\ln(10)} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(hto0) (log_(e)(1+2h)-2log_(e)(1+h))/(h^(2)).

Evaluate lim_(xtooo) (log_(e)x)/(x)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate lim_(x to 0) (log_(tan^(2)x)(tan^(2)2x).

Evaluate lim_(xto a)(log{1+(x-a)})/((x-a))

Evaluate lim_(xto0) (log(5+x)-log(5-x))/(x).

Evaluate lim_(hto0) [(1)/(h^(3)sqrt(8+h))-(1)/(2h)].

Evaluate lim_(hto0)(sqrt(x+h)-sqrt(x))/(h)