Home
Class 12
MATHS
Evaluate lim(xto0)((ab)^(x)-a^(x)-b^(x)+...

Evaluate `lim_(xto0)((ab)^(x)-a^(x)-b^(x)+1)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{(ab)^x - a^x - b^x + 1}{x^2}, \] we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression in the limit: \[ (ab)^x - a^x - b^x + 1 = e^{x \ln(ab)} - e^{x \ln a} - e^{x \ln b} + 1. \] ### Step 2: Use Taylor expansion Using the Taylor expansion of \(e^x\) around \(x=0\): \[ e^u \approx 1 + u + \frac{u^2}{2} + O(u^3), \] we can expand each term: 1. \( (ab)^x = e^{x \ln(ab)} \approx 1 + x \ln(ab) + \frac{(x \ln(ab))^2}{2} + O(x^3) \) 2. \( a^x = e^{x \ln a} \approx 1 + x \ln a + \frac{(x \ln a)^2}{2} + O(x^3) \) 3. \( b^x = e^{x \ln b} \approx 1 + x \ln b + \frac{(x \ln b)^2}{2} + O(x^3) \) ### Step 3: Substitute the expansions Substituting these expansions into the limit expression, we get: \[ \begin{align*} (ab)^x - a^x - b^x + 1 &\approx \left(1 + x \ln(ab) + \frac{(x \ln(ab))^2}{2}\right) - \left(1 + x \ln a + \frac{(x \ln a)^2}{2}\right) \\ &\quad - \left(1 + x \ln b + \frac{(x \ln b)^2}{2}\right) + 1. \end{align*} \] ### Step 4: Simplify the expression Simplifying the above expression, we have: \[ x \ln(ab) - x \ln a - x \ln b + \frac{(x \ln(ab))^2}{2} - \frac{(x \ln a)^2}{2} - \frac{(x \ln b)^2}{2}. \] Notice that \( \ln(ab) = \ln a + \ln b \), so the linear terms cancel out: \[ \frac{(x \ln(ab))^2}{2} - \frac{(x \ln a)^2}{2} - \frac{(x \ln b)^2}{2} = \frac{x^2}{2} \left((\ln(ab))^2 - (\ln a)^2 - (\ln b)^2\right). \] ### Step 5: Substitute back into the limit Now substituting back into the limit: \[ \lim_{x \to 0} \frac{\frac{x^2}{2} \left((\ln(ab))^2 - (\ln a)^2 - (\ln b)^2\right)}{x^2} = \frac{1}{2} \left((\ln(ab))^2 - (\ln a)^2 - (\ln b)^2\right). \] ### Step 6: Evaluate the limit We know that: \[ \ln(ab) = \ln a + \ln b, \] so \[ (\ln(ab))^2 = (\ln a + \ln b)^2 = (\ln a)^2 + 2 \ln a \ln b + (\ln b)^2. \] Thus, \[ (\ln(ab))^2 - (\ln a)^2 - (\ln b)^2 = 2 \ln a \ln b. \] ### Final Step: Conclusion Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{(ab)^x - a^x - b^x + 1}{x^2} = \frac{1}{2} \cdot 2 \ln a \ln b = \ln a \ln b. \] So the final answer is: \[ \boxed{\ln a \ln b}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto 0)(a^(x)-b^(x))/x

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (10^(x)-2^(x)-5^(x)+1)/(xtanx).

Evaluate lim_(xto0) ((a^(x)+b^(x)+c^(x))/(3))^(2//x),(a,b,cgt0)

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))