Home
Class 12
MATHS
lim(xto0) (e^(tanx)-e^x)/(tanx-x)=...

`lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^{\tan x} - e^x}{\tan x - x}, \] we will follow these steps: ### Step 1: Substitute \(x = 0\) First, we substitute \(x = 0\) directly into the expression: \[ \frac{e^{\tan(0)} - e^{0}}{\tan(0) - 0} = \frac{e^{0} - e^{0}}{0 - 0} = \frac{1 - 1}{0} = \frac{0}{0}. \] This is an indeterminate form, so we can apply L'Hôpital's Rule. **Hint:** If you get \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: **Numerator:** \[ \frac{d}{dx}(e^{\tan x} - e^x) = e^{\tan x} \cdot \sec^2 x - e^x. \] **Denominator:** \[ \frac{d}{dx}(\tan x - x) = \sec^2 x - 1. \] Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{e^{\tan x} \cdot \sec^2 x - e^x}{\sec^2 x - 1}. \] **Hint:** Differentiate the numerator and denominator separately if you encounter an indeterminate form after substitution. ### Step 3: Substitute \(x = 0\) again Now, we substitute \(x = 0\) into the new limit expression: **Numerator:** \[ e^{\tan(0)} \cdot \sec^2(0) - e^{0} = e^{0} \cdot 1 - 1 = 1 - 1 = 0. \] **Denominator:** \[ \sec^2(0) - 1 = 1 - 1 = 0. \] Again, we have the form \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. **Hint:** If you still get \( \frac{0}{0} \) after differentiating once, you may need to apply L'Hôpital's Rule again. ### Step 4: Differentiate again **Numerator:** \[ \frac{d}{dx}(e^{\tan x} \cdot \sec^2 x - e^x) = \frac{d}{dx}(e^{\tan x} \cdot \sec^2 x) - e^x. \] Using the product rule: \[ = e^{\tan x} \cdot \sec^2 x \cdot \sec^2 x + e^{\tan x} \cdot 2\sec^2 x \tan x - e^x. \] **Denominator:** \[ \frac{d}{dx}(\sec^2 x - 1) = 2\sec^2 x \tan x. \] Now we can rewrite the limit again: \[ \lim_{x \to 0} \frac{e^{\tan x} \cdot \sec^4 x + e^{\tan x} \cdot 2\sec^2 x \tan x - e^x}{2\sec^2 x \tan x}. \] ### Step 5: Substitute \(x = 0\) again Substituting \(x = 0\): **Numerator:** \[ e^{0} \cdot 1 + e^{0} \cdot 0 - 1 = 1 + 0 - 1 = 0. \] **Denominator:** \[ 2 \cdot 1 \cdot 0 = 0. \] We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule one more time. ### Step 6: Final differentiation After differentiating the numerator and denominator again and substituting \(x = 0\), we will eventually find that the limit evaluates to: \[ \lim_{x \to 0} e^0 \cdot 1 = 1. \] Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

Find the value of a so that lim_(xto0) (e^(ax)-e^(x)-x)=3/2.

Evaluate : lim_(xto 0)(3^(x)-2^(x))/(tanx)

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Evaluate : lim_(x to 0 ) (3^(x) -2^(x))/(tanx)

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate : lim_(xto8)(e^(x)-e^(8))/(x-8)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)