Home
Class 12
MATHS
Evaluate lim(xto0)(ae^(x)-b)/x=2. Find a...

Evaluate `lim_(xto0)(ae^(x)-b)/x=2`. Find a and b

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{ae^x - b}{x} = 2 \) and find the values of \( a \) and \( b \), we can follow these steps: ### Step 1: Set up the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{ae^x - b}{x} = 2 \] ### Step 2: Substitute \( x = 0 \) Substituting \( x = 0 \) directly into the expression gives: \[ \frac{ae^0 - b}{0} = \frac{a - b}{0} \] This results in an indeterminate form \( \frac{0}{0} \), which means we need to apply L'Hôpital's Rule or ensure the numerator approaches zero. ### Step 3: Set the numerator to zero For the limit to be of the form \( \frac{0}{0} \), we need: \[ a - b = 0 \] This gives us our first equation: \[ a = b \quad \text{(Equation 1)} \] ### Step 4: Differentiate the numerator and denominator Now we differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(ae^x - b) = ae^x \] \[ \text{Denominator: } \frac{d}{dx}(x) = 1 \] Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{ae^x}{1} = a \] ### Step 5: Set the limit equal to 2 From the limit we have: \[ a = 2 \] ### Step 6: Substitute \( a \) back into Equation 1 Now we substitute \( a \) back into Equation 1: \[ a = b \implies 2 = b \] ### Conclusion Thus, we find: \[ a = 2 \quad \text{and} \quad b = 2 \] ### Final Answer The values of \( a \) and \( b \) are: \[ a = 2, \quad b = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto 0)(a^(x)-b^(x))/x

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0) (1-cos2x)/x^(2)