Home
Class 12
MATHS
lim(x->1) (log3 3x)^(logx 3)=...

`lim_(x->1) (log_3 3x)^(log_x 3)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} (\log_3 (3x))^{\log_x 3} \), we will follow these steps: ### Step 1: Identify the form of the limit When we substitute \( x = 1 \) into the expression, we get: \[ (\log_3 (3 \cdot 1))^{\log_1 3} = (\log_3 3)^{\text{undefined}} = 1^{\infty} \] This is an indeterminate form, which suggests we can use the exponential limit technique. **Hint:** Recognize the indeterminate form \( 1^{\infty} \) and prepare to use the limit transformation. ### Step 2: Rewrite the limit using the exponential function We can express the limit in the form: \[ y = (\log_3 (3x))^{\log_x 3} \] Taking the natural logarithm on both sides gives: \[ \ln y = \log_x 3 \cdot \log_3 (3x) \] Now we need to find the limit of \( \ln y \) as \( x \to 1 \). **Hint:** Use logarithmic properties to simplify the expression. ### Step 3: Simplify the expression Using the change of base formula, we have: \[ \log_x 3 = \frac{\log_3 3}{\log_3 x} = \frac{1}{\log_3 x} \] Thus, \[ \ln y = \frac{1}{\log_3 x} \cdot \log_3 (3x) = \frac{\log_3 3 + \log_3 x}{\log_3 x} = \frac{1 + \log_3 x}{\log_3 x} \] **Hint:** Simplify the expression further to isolate the limit. ### Step 4: Evaluate the limit Now we can separate the terms: \[ \ln y = \frac{1}{\log_3 x} + 1 \] As \( x \to 1 \), \( \log_3 x \to 0 \), leading to: \[ \lim_{x \to 1} \ln y = \lim_{x \to 1} \left( \frac{1}{\log_3 x} + 1 \right) \] The term \( \frac{1}{\log_3 x} \) approaches \( \infty \), so: \[ \lim_{x \to 1} \ln y = \infty \] **Hint:** Recognize that \( \ln y \to \infty \) implies \( y \to e^{\infty} \). ### Step 5: Convert back to the original limit Since \( \ln y \to \infty \), we have: \[ y \to e^{\infty} = \infty \] Thus, the original limit evaluates to: \[ \lim_{x \to 1} (\log_3 (3x))^{\log_x 3} = \infty \] **Final Result:** \[ \lim_{x \to 1} (\log_3 (3x))^{\log_x 3} = \infty \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to oo) (log_(3)3x)^(log_(x)3).

If lim_(xto0) (log (3+x)-log (3-x))/(x)=k , the value of k is

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

Evaluate the following limit: (lim)_(x->0)(log(3+x)-"log"(3-x))/x

The domain of the function: f(x)=log_(3) [-(log_(3) x)^(2)+5 log_3x-6]" is :"

lim_(xrarr0)(x^3 log x)

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)

lim_(xto0) (log(1+x+x^(2))+log(1-x+x^(2)))/(secx-cosx)=