Home
Class 12
MATHS
Evaluate: ("lim")(xvec7/2)(2x^2-9x+8)^(c...

Evaluate: `("lim")_(xvec7/2)(2x^2-9x+8)^(cot(2x-7))`

A

`e^(5//2)`

B

`e^(-5//2)`

C

`e^(7//2)`

D

`e^(3//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{7}{2}} (2x^2 - 9x + 8)^{\cot(2x - 7)}, \] we can follow these steps: ### Step 1: Substitute \( x = \frac{7}{2} \) First, we substitute \( x = \frac{7}{2} \) into the expression: \[ 2\left(\frac{7}{2}\right)^2 - 9\left(\frac{7}{2}\right) + 8. \] Calculating this gives: \[ 2 \cdot \frac{49}{4} - \frac{63}{2} + 8 = \frac{49}{2} - \frac{63}{2} + \frac{32}{4} = \frac{49 - 63 + 32}{2} = \frac{18}{2} = 9. \] Now, substituting into \( \cot(2x - 7) \): \[ \cot(2 \cdot \frac{7}{2} - 7) = \cot(7 - 7) = \cot(0), \] which is undefined. Thus, we have the form \( 9^{\text{undefined}} \), which is indeterminate. ### Step 2: Identify the Indeterminate Form We recognize that as \( x \to \frac{7}{2} \), the base \( (2x^2 - 9x + 8) \) approaches 1, and \( \cot(2x - 7) \) approaches infinity. This gives us the indeterminate form \( 1^{\infty} \). ### Step 3: Apply the Standard Limit Formula For limits of the form \( \lim_{x \to a} f(x)^{g(x)} \) that yield \( 1^{\infty} \), we can use the formula: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) (f(x) - 1)}. \] Here, let \( f(x) = 2x^2 - 9x + 8 \) and \( g(x) = \cot(2x - 7) \). ### Step 4: Rewrite the Limit We rewrite the limit as: \[ \lim_{x \to \frac{7}{2}} \cot(2x - 7) \cdot (2x^2 - 9x + 8 - 1). \] This simplifies to: \[ \lim_{x \to \frac{7}{2}} \cot(2x - 7) \cdot (2x^2 - 9x + 7). \] ### Step 5: Evaluate the Limit Now, we need to evaluate: \[ \lim_{x \to \frac{7}{2}} \frac{2x^2 - 9x + 7}{\tan(2x - 7)}. \] Both the numerator and denominator approach 0 as \( x \to \frac{7}{2} \), giving us the \( \frac{0}{0} \) indeterminate form. We can apply L'Hôpital's Rule. ### Step 6: Differentiate Numerator and Denominator Differentiate the numerator and denominator: - The derivative of the numerator \( 2x^2 - 9x + 7 \) is \( 4x - 9 \). - The derivative of \( \tan(2x - 7) \) is \( 2\sec^2(2x - 7) \). Thus, we have: \[ \lim_{x \to \frac{7}{2}} \frac{4x - 9}{2\sec^2(2x - 7)}. \] ### Step 7: Substitute \( x = \frac{7}{2} \) Now substituting \( x = \frac{7}{2} \): \[ 4\left(\frac{7}{2}\right) - 9 = 14 - 9 = 5, \] and \[ 2\sec^2(0) = 2 \cdot 1 = 2. \] So we have: \[ \lim_{x \to \frac{7}{2}} \frac{5}{2} = \frac{5}{2}. \] ### Step 8: Final Limit Calculation Now we can substitute this back into our exponential limit: \[ e^{\frac{5}{2}}. \] Thus, the final answer is: \[ \lim_{x \to \frac{7}{2}} (2x^2 - 9x + 8)^{\cot(2x - 7)} = e^{\frac{5}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(x->7/2)(2x^2-9x+8)^(cot(2x-7))

Evaluate lim_(xto7//2) (2x^(2)-9x+8)^(cot(2x-7)).

Evaluate: ("lim")_(xvec0)(x2^x-x)/(1-cosx)

Evaluate : ("lim")_(xvec2)(x^2-5x+6)/(x^2-4)

Evaluate: ("lim")_(xvec-2^+) (x^2-1)/(2x+4)

Evaluate: ("lim")_(xvec0)(e^x^2-cosx)/(x^2)

Evaluate: ("lim")_(xvec2)(x-2)/((log)_a(x-1))

Evaluate: ("lim")_(xvec0)(e^x+e^(-x)-2)/(x^2)

Evaluate: ("lim")_(xvec1)sec(pi/(2^x))logxdot

Evaluate : ("lim")_(xvec1)(2/(1-x^2)+1/(x-1))