Home
Class 12
MATHS
The value of lim(xto1)(tan((pi)/4+logx))...

The value of `lim_(xto1)(tan((pi)/4+logx))^(1/(logx))` is equal to

A

`e`

B

`e^(-1)`

C

`e^(2)`

D

`e^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \left( \tan\left(\frac{\pi}{4} + \log x\right) \right)^{\frac{1}{\log x}} \), we will follow these steps: ### Step 1: Identify the Limit Form First, we substitute \( x = 1 \) into the expression: \[ \tan\left(\frac{\pi}{4} + \log(1)\right)^{\frac{1}{\log(1)}} \] Since \( \log(1) = 0 \), this results in: \[ \tan\left(\frac{\pi}{4} + 0\right)^{\frac{1}{0}} = \tan\left(\frac{\pi}{4}\right)^{\infty} = 1^{\infty} \] This is an indeterminate form of type \( 1^{\infty} \). ### Step 2: Rewrite the Limit We can use the standard limit result for \( a^{b} \) where \( a \to 1 \) and \( b \to \infty \): \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) (f(x) - 1)} \] Here, let \( f(x) = \tan\left(\frac{\pi}{4} + \log x\right) \) and \( g(x) = \frac{1}{\log x} \). ### Step 3: Calculate \( f(x) - 1 \) We need to find: \[ f(x) - 1 = \tan\left(\frac{\pi}{4} + \log x\right) - 1 \] Using the identity \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \), where \( A = \frac{\pi}{4} \) and \( B = \log x \): \[ \tan\left(\frac{\pi}{4} + \log x\right) = \frac{1 + \tan(\log x)}{1 - \tan(\log x)} \] Thus, \[ f(x) - 1 = \frac{1 + \tan(\log x)}{1 - \tan(\log x)} - 1 = \frac{1 + \tan(\log x) - (1 - \tan(\log x))}{1 - \tan(\log x)} = \frac{2\tan(\log x)}{1 - \tan(\log x)} \] ### Step 4: Evaluate the Limit Now, we need to evaluate: \[ \lim_{x \to 1} \frac{1}{\log x} \cdot \frac{2\tan(\log x)}{1 - \tan(\log x)} \] As \( x \to 1 \), \( \log x \to 0 \), and thus \( \tan(\log x) \to \tan(0) = 0 \). This gives us a \( \frac{0}{0} \) form. ### Step 5: Apply L'Hôpital's Rule We differentiate the numerator and denominator: - The derivative of \( 2\tan(\log x) \) is \( 2\sec^2(\log x) \cdot \frac{1}{x} \). - The derivative of \( 1 - \tan(\log x) \) is \( -\sec^2(\log x) \cdot \frac{1}{x} \). Thus, applying L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{2\sec^2(\log x) \cdot \frac{1}{x}}{-\sec^2(\log x) \cdot \frac{1}{x}} = \lim_{x \to 1} -2 = -2 \] ### Step 6: Final Result Now substituting back into the limit: \[ \lim_{x \to 1} f(x)^{g(x)} = e^{-2} \] Thus, the value of the limit is: \[ \lim_{x \to 1} \left( \tan\left(\frac{\pi}{4} + \log x\right) \right)^{\frac{1}{\log x}} = e^{-2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

Evaluate lim_(xto1) (1-x)"tan"(pix)/(2).

lim_(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

int(log(x+1)-logx)/(x(x+1))dx is equal to :

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to