Home
Class 12
MATHS
The value of lim(ntooo)((a-1+root(n)(b))...

The value of `lim_(ntooo)((a-1+root(n)(b))/a)^(n) (agt0,bgt0)` is equal to

A

`root(a)(b)`

B

`root(b)(a)`

C

`sqrt(b)`

D

`sqrt(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \frac{a - 1 + \sqrt[n]{b}}{a} \right)^n \) where \( a > 0 \) and \( b > 0 \), we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the limit in a more manageable form: \[ L = \lim_{n \to \infty} \left( \frac{a - 1 + \sqrt[n]{b}}{a} \right)^n \] This can be expressed as: \[ L = \lim_{n \to \infty} \left( 1 + \frac{(a - 1) + \sqrt[n]{b} - a}{a} \right)^n \] which simplifies to: \[ L = \lim_{n \to \infty} \left( 1 + \frac{\sqrt[n]{b} - 1}{a} \right)^n \] ### Step 2: Analyze the term \( \sqrt[n]{b} \) As \( n \to \infty \), we know that \( \sqrt[n]{b} \) approaches \( 1 \). Therefore, we can rewrite: \[ L = \lim_{n \to \infty} \left( 1 + \frac{\sqrt[n]{b} - 1}{a} \right)^n \] ### Step 3: Use the exponential limit This expression is of the form \( (1 + x_n)^n \) where \( x_n = \frac{\sqrt[n]{b} - 1}{a} \). We can use the fact that: \[ \lim_{n \to \infty} (1 + x_n)^n = e^{\lim_{n \to \infty} n x_n} \] if \( \lim_{n \to \infty} n x_n \) exists. ### Step 4: Find \( n x_n \) Now we compute: \[ n x_n = n \cdot \frac{\sqrt[n]{b} - 1}{a} \] To evaluate \( \lim_{n \to \infty} n (\sqrt[n]{b} - 1) \), we can use the fact that \( \sqrt[n]{b} = e^{\frac{\log b}{n}} \). Thus: \[ \sqrt[n]{b} - 1 = e^{\frac{\log b}{n}} - 1 \approx \frac{\log b}{n} \quad \text{(as \( n \to \infty \))} \] This gives: \[ n (\sqrt[n]{b} - 1) \approx n \cdot \frac{\log b}{n} = \log b \] ### Step 5: Substitute back into the limit Now substituting back, we have: \[ \lim_{n \to \infty} n x_n = \lim_{n \to \infty} \frac{\log b}{a} = \frac{\log b}{a} \] Thus: \[ L = e^{\frac{\log b}{a}} = b^{\frac{1}{a}} \] ### Final Answer Therefore, the value of the limit is: \[ \lim_{n \to \infty} \left( \frac{a - 1 + \sqrt[n]{b}}{a} \right)^n = b^{\frac{1}{a}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo) a^xsin ((b)/(a^x)) is (agt1)

lim_(ntooo) ((n!)^(1//n))/(n) equals

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

The value of lim_(ntooo) [root(3)((n+1)^(2))-root(3)((n-1)^(2))] is __________.

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is (a) -1 (b) 0 (c) 1 (d) ∞

Evaluate lim_(ntooo)(pin)^(2//n)