Home
Class 12
MATHS
Evaluate lim(xto0)|x|^(sinx)...

Evaluate `lim_(xto0)|x|^(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} |x|^{\sin x} \), we can follow these steps: ### Step 1: Rewrite the expression using logarithms We know that \( a^b = e^{b \ln a} \). Therefore, we can rewrite the limit as: \[ |x|^{\sin x} = e^{\sin x \ln |x|} \] Thus, we have: \[ \lim_{x \to 0} |x|^{\sin x} = \lim_{x \to 0} e^{\sin x \ln |x|} \] ### Step 2: Analyze the limit of the exponent Next, we need to evaluate the limit of the exponent: \[ \lim_{x \to 0} \sin x \ln |x| \] As \( x \to 0 \), \( \sin x \to 0 \) and \( \ln |x| \to -\infty \). This creates an indeterminate form of \( 0 \cdot (-\infty) \). To resolve this, we can rewrite it as: \[ \sin x \ln |x| = \frac{\ln |x|}{\frac{1}{\sin x}} \] Now, as \( x \to 0 \), \( \frac{1}{\sin x} \to \infty \) and \( \ln |x| \to -\infty \), giving us the form \( \frac{-\infty}{\infty} \). ### Step 3: Apply L'Hôpital's Rule We can apply L'Hôpital's Rule to evaluate this limit: \[ \lim_{x \to 0} \frac{\ln |x|}{\frac{1}{\sin x}} \] Differentiating the numerator and denominator gives: - The derivative of \( \ln |x| \) is \( \frac{1}{x} \). - The derivative of \( \frac{1}{\sin x} \) is \( -\frac{\cos x}{\sin^2 x} \). Thus, we have: \[ \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{\cos x}{\sin^2 x}} = \lim_{x \to 0} -\frac{\sin^2 x}{x \cos x} \] ### Step 4: Simplify the limit Now we can simplify the limit: \[ \lim_{x \to 0} -\frac{\sin^2 x}{x \cos x} = \lim_{x \to 0} -\frac{\sin^2 x}{x^2} \cdot \frac{x}{\cos x} \] We know that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), so: \[ \lim_{x \to 0} -\frac{\sin^2 x}{x^2} = -1 \] And since \( \cos x \to 1 \) as \( x \to 0 \): \[ \lim_{x \to 0} \frac{x}{\cos x} = 0 \] Thus, the limit evaluates to: \[ \lim_{x \to 0} -\frac{\sin^2 x}{x \cos x} = 0 \] ### Step 5: Conclude the limit Now substituting back into our expression for the limit: \[ \lim_{x \to 0} e^{\sin x \ln |x|} = e^{0} = 1 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} |x|^{\sin x} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (e^(sinx)-(1+sinx))/((tan(sinx))^(2))

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (sinx-sina)/(sqrt(x)-sqrt(a))

Evaluate lim_(xto 0^(+))(sinx)^(tanx)

Evaluate, lim_(xto0) (sin2x+3x)/(2x+tan3x) .

Evaluate lim_(xto0) {(sinx-x+(x^(3))/(6))/(x^(5))}.

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0