Home
Class 12
MATHS
Evaluate lim(ntooo)(pin)^(2//n)...

Evaluate `lim_(ntooo)(pin)^(2//n)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{n \to \infty} \pi^{\frac{2}{n}} \), we can follow these steps: ### Step 1: Rewrite the limit Let \( L = \lim_{n \to \infty} \pi^{\frac{2}{n}} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \log L = \lim_{n \to \infty} \log \left( \pi^{\frac{2}{n}} \right) \] ### Step 3: Apply logarithmic properties Using the property of logarithms \( \log(a^b) = b \log a \), we can rewrite the expression: \[ \log L = \lim_{n \to \infty} \frac{2}{n} \log \pi \] ### Step 4: Evaluate the limit As \( n \to \infty \), the term \( \frac{2}{n} \) approaches 0. Therefore: \[ \log L = 0 \] ### Step 5: Exponentiate to solve for L To find \( L \), we exponentiate both sides: \[ L = e^{\log L} = e^0 = 1 \] ### Conclusion Thus, the limit is: \[ \lim_{n \to \infty} \pi^{\frac{2}{n}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

Evaluate lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).

Evaluate lim_(ntooo) sin^(n)((2pin)/(3n+1)),ninN.

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

Evaluate lim_(ntooo) ((1^(2)-2^(2)+3^(2)-4^(2)+5^(2)+...n" terms"))/(n^(2)).

Evaluate lim_(ntooo) (-1)^(n-1)sin(pisqrt(n^(2)+0.5n+1)),"where "nin N

Evaluate lim_(nto oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

Evaluate lim_(ntooo) (1)/(n^(2(log_(e)n-log_(e)(n+1)))+n) .