Home
Class 12
MATHS
evaluate lim(n->oo)((e^n)/pi)^(1/ n)...

evaluate `lim_(n->oo)((e^n)/pi)^(1/ n)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{n \to \infty} \left( \frac{e^n}{\pi} \right)^{\frac{1}{n}} \), we can follow these steps: ### Step-by-Step Solution: 1. **Set up the limit**: Let \( L = \lim_{n \to \infty} \left( \frac{e^n}{\pi} \right)^{\frac{1}{n}} \). 2. **Take the natural logarithm**: To simplify the limit, we take the natural logarithm of both sides: \[ \ln L = \lim_{n \to \infty} \ln \left( \left( \frac{e^n}{\pi} \right)^{\frac{1}{n}} \right) \] 3. **Use the logarithm property**: Using the property \( \ln(a^b) = b \ln a \), we have: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \ln \left( \frac{e^n}{\pi} \right) \] 4. **Expand the logarithm**: Using the property \( \ln \left( \frac{a}{b} \right) = \ln a - \ln b \): \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \left( \ln(e^n) - \ln(\pi) \right) \] 5. **Simplify the logarithms**: We know \( \ln(e^n) = n \) and \( \ln(\pi) \) is a constant: \[ \ln L = \lim_{n \to \infty} \frac{1}{n} \left( n - \ln(\pi) \right) \] 6. **Separate the limit**: This can be separated as: \[ \ln L = \lim_{n \to \infty} \left( 1 - \frac{\ln(\pi)}{n} \right) \] 7. **Evaluate the limit**: As \( n \to \infty \), \( \frac{\ln(\pi)}{n} \to 0 \): \[ \ln L = 1 - 0 = 1 \] 8. **Exponentiate to find \( L \)**: Now, we exponentiate both sides to solve for \( L \): \[ L = e^1 = e \] ### Final Answer: Thus, the limit is: \[ \lim_{n \to \infty} \left( \frac{e^n}{\pi} \right)^{\frac{1}{n}} = e \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(n->oo)(4^n+5^n)^(1/n)

Evaluate: lim_(n->oo)sin^n((2pin)/(3n+1)),n in Ndot

Evaluate Lim_(n->oo)n^2 int_(-1/n)^(1/n) (2006sinx+2007cosx) |x|dx

lim_(n->oo)sin(x/2^n)/(x/2^n)

lim_(n->oo)2^(n-1)sin(a/2^n)

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

Evaluate: lim_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

lim_(n->oo) nsin(1/n)