Home
Class 12
MATHS
Slove lim(xto0)((1+x)^(1//x)-e)/x...

Slove `lim_(xto0)((1+x)^(1//x)-e)/x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} \), we will follow these steps: ### Step 1: Expand \( (1+x)^{\frac{1}{x}} \) Using the known expansion for \( (1+x)^{\frac{1}{x}} \) as \( e \cdot \left( 1 - \frac{x}{2} + \frac{11x^2}{24} - \ldots \right) \), we can write: \[ (1+x)^{\frac{1}{x}} \approx e \left( 1 - \frac{x}{2} + \frac{11x^2}{24} \right) \] ### Step 2: Substitute the expansion into the limit Now, substituting this expansion into our limit expression: \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = \lim_{x \to 0} \frac{e \left( 1 - \frac{x}{2} + \frac{11x^2}{24} \right) - e}{x} \] This simplifies to: \[ \lim_{x \to 0} \frac{e - e + e \left( -\frac{x}{2} + \frac{11x^2}{24} \right)}{x} = \lim_{x \to 0} \frac{e \left( -\frac{x}{2} + \frac{11x^2}{24} \right)}{x} \] ### Step 3: Simplify the expression Now, we can simplify the fraction: \[ = \lim_{x \to 0} \left( -\frac{e}{2} + \frac{11ex}{24} \right) \] ### Step 4: Evaluate the limit As \( x \to 0 \), the term \( \frac{11ex}{24} \) approaches 0. Therefore, we are left with: \[ -\frac{e}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x} = -\frac{e}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .

lim_(xto0)((e^(x)-1)/x)^(1//x)

The value of lim_(xto 0)(e-(1+x)^(1//x))/(tanx) is

Find lim_(xto0)(cot^(-1)(1/x))/x

(ii) lim_(xto0) ((1+x)^3-(1-x)^3)/x

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.