Home
Class 12
MATHS
Solve (i) lim(xtooo)tan^(-1)x (ii) lim...

Solve (i) `lim_(xtooo)tan^(-1)x`
(ii) `lim_(xto-oo)tan^(-1)x`
(where [.] denotes greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limits given in the question, we will analyze the behavior of the function \( \tan^{-1}(x) \) as \( x \) approaches infinity and negative infinity. ### Step-by-Step Solution: **(i) Calculate \( \lim_{x \to \infty} \tan^{-1}(x) \)** 1. **Understanding the Function**: The function \( \tan^{-1}(x) \) is the inverse tangent function. It is defined for all real numbers and has horizontal asymptotes. 2. **Behavior as \( x \to \infty \)**: As \( x \) increases towards infinity, the value of \( \tan^{-1}(x) \) approaches \( \frac{\pi}{2} \). This is because the tangent function approaches infinity as its input approaches \( \frac{\pi}{2} \). 3. **Conclusion**: Therefore, we can write: \[ \lim_{x \to \infty} \tan^{-1}(x) = \frac{\pi}{2} \] 4. **Applying the Greatest Integer Function**: Since we need the greatest integer function of this limit: \[ \lfloor \lim_{x \to \infty} \tan^{-1}(x) \rfloor = \lfloor \frac{\pi}{2} \rfloor \] The value of \( \frac{\pi}{2} \) is approximately \( 1.57 \), so: \[ \lfloor \frac{\pi}{2} \rfloor = 1 \] **Final Answer for (i)**: \[ \lfloor \lim_{x \to \infty} \tan^{-1}(x) \rfloor = 1 \] --- **(ii) Calculate \( \lim_{x \to -\infty} \tan^{-1}(x) \)** 1. **Understanding the Function**: Again, we are dealing with the inverse tangent function \( \tan^{-1}(x) \). 2. **Behavior as \( x \to -\infty \)**: As \( x \) decreases towards negative infinity, the value of \( \tan^{-1}(x) \) approaches \( -\frac{\pi}{2} \). This is because the tangent function approaches negative infinity as its input approaches \( -\frac{\pi}{2} \). 3. **Conclusion**: Therefore, we can write: \[ \lim_{x \to -\infty} \tan^{-1}(x) = -\frac{\pi}{2} \] 4. **Applying the Greatest Integer Function**: Since we need the greatest integer function of this limit: \[ \lfloor \lim_{x \to -\infty} \tan^{-1}(x) \rfloor = \lfloor -\frac{\pi}{2} \rfloor \] The value of \( -\frac{\pi}{2} \) is approximately \( -1.57 \), so: \[ \lfloor -\frac{\pi}{2} \rfloor = -2 \] **Final Answer for (ii)**: \[ \lfloor \lim_{x \to -\infty} \tan^{-1}(x) \rfloor = -2 \] --- ### Summary of Results: - (i) \( \lfloor \lim_{x \to \infty} \tan^{-1}(x) \rfloor = 1 \) - (ii) \( \lfloor \lim_{x \to -\infty} \tan^{-1}(x) \rfloor = -2 \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Solve (i) lim_(xto0^(+))[(tanx)/x] (ii) lim_(xto0^(-))[(tanx)/x] (where [.] denotes greatest integer function)

Solve (i) lim_(xto0)cotx (ii) lim_(xto+oo)cot^(-1)x (where [.] denotes greatest integer function)

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is discontinous at

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is