Home
Class 12
MATHS
Solve (i) lim(xto1^(-))sin (sin^(-1)x) ...

Solve (i) `lim_(xto1^(-))sin (sin^(-1)x)` (ii) `lim_(xto pi//2)sin^(-1)(sinx)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given limits step by step. ### (i) Solve `lim_(x -> 1^(-)) sin(sin^(-1)x)` 1. **Understanding the Limit**: We need to find the limit of `sin(sin^(-1)x)` as `x` approaches `1` from the left (denoted as `1^(-)`). 2. **Substituting the Limit**: As `x` approaches `1` from the left, we can express it as: \[ \lim_{x \to 1^-} \sin(\sin^{-1} x) \] Since `sin^{-1} x` is the inverse sine function, we know that `sin^{-1}(1) = \frac{\pi}{2}`. 3. **Applying the Limit**: Now, substituting `x = 1` into the expression: \[ \sin(\sin^{-1}(1)) = \sin\left(\frac{\pi}{2}\right) \] 4. **Calculating the Sine**: We know that: \[ \sin\left(\frac{\pi}{2}\right) = 1 \] 5. **Final Result**: Therefore, the limit is: \[ \lim_{x \to 1^-} \sin(\sin^{-1} x) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|39 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Given, lim_(xto0) (sin3x)/(sin7x) .

Find the following limits: (i)lim_(xto0) (1)/(x)sin^(-1)((2x)/(1+x^(2)))" "(ii)lim_(xto0) (1)/(x)sin^(-1)(3x-4x^(3))

Solve (i) lim_(xtooo)tan^(-1)x (ii) lim_(xto-oo)tan^(-1)x (where [.] denotes greatest integer function)

Solve (i) lim_(xto0^(+))[(tanx)/x] (ii) lim_(xto0^(-))[(tanx)/x] (where [.] denotes greatest integer function)

Find the limits of the following: (i)lim_(xto0) (sin3x)/(x)" "(ii)lim_(xto0) (sin7x)/(sin4x)" "(iii)lim_(xto0) (1-cos^(2)x)/(x^(2))

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Find the following limits. (i)" "lim_(xto2) (4x)/(x^(3)-3)" "(ii)" "lim_(xto1)(log_(10)x-3)/(3x-2)" "(iii)" "lim_(xto pi) (3+cosx)/(2-sinx)

Find the following limits: (i) lim_(xto0) (1-x)^((1)/(x))" "(ii) lim_(xto1) (1+log_(e)x)^((1)/(log_(e)x)) (iii)lim_(xto0) (1+sinx)^((1)/(x))

Evalate lim_(xto1^(+)) 2^(-2^((1)/(1-x))).